The Effect of Reference Climatology on Global Flood Forecasting

Feyera A. Hirpa Institute of Environment and Sustainability, European Commission Joint Research Centre, Ispra, Italy

Search for other papers by Feyera A. Hirpa in
Current site
Google Scholar
PubMed
Close
,
Peter Salamon Institute of Environment and Sustainability, European Commission Joint Research Centre, Ispra, Italy

Search for other papers by Peter Salamon in
Current site
Google Scholar
PubMed
Close
,
Lorenzo Alfieri Institute of Environment and Sustainability, European Commission Joint Research Centre, Ispra, Italy

Search for other papers by Lorenzo Alfieri in
Current site
Google Scholar
PubMed
Close
,
Jutta Thielen-del Pozo Institute of Environment and Sustainability, European Commission Joint Research Centre, Ispra, Italy

Search for other papers by Jutta Thielen-del Pozo in
Current site
Google Scholar
PubMed
Close
,
Ervin Zsoter European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Ervin Zsoter in
Current site
Google Scholar
PubMed
Close
, and
Florian Pappenberger European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, and College of Hydrology and Water Resources, Hohai University, Nanjing, China, and School of Geographical Sciences, University of Bristol, Bristol, United Kingdom

Search for other papers by Florian Pappenberger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Global Flood Awareness System (GloFAS) is a preoperational suite performing daily streamflow simulations to detect severe floods in large river basins. GloFAS defines the severity of a flood event with respect to thresholds estimated based on model-simulated streamflow climatology. Hence, determining accurate and consistent critical thresholds is important for its skillful flood forecasting. In this work, streamflow climatologies derived from two global meteorological inputs were compared, and their impacts on global flood forecasting were assessed. The first climatology is based on precipitation-corrected reanalysis data (ERA-Interim), which is currently used in the operational GloFAS forecast, while the second is derived from reforecasts that are routinely produced using the latest weather model. The results of the comparison indicate that 1) flood thresholds derived from the two datasets have substantial dissimilarities with varying characteristics across different regions of the globe; 2) the differences in the thresholds have a spatially variable impact on the severity classification of a flood; and 3) ERA-Interim produced lower flood threshold exceedance probabilities (and flood detection rates) than the reforecast for several large rivers at short forecast lead times, where the uncertainty in the meteorological forecast is smaller. Overall, it was found that the use of reforecasts, instead of ERA-Interim, marginally improved the flood detection skill of GloFAS forecasts.

Denotes Open Access content.

Corresponding author address: Feyera A. Hirpa, Institute of Environment and Sustainability, European Commission Joint Research Centre, Via Enrico Fermi 2749 TP 122, I-21027 Ispra, Italy. E-mail: feyera-aga.hirpa@jrc.ec.europa.eu

Abstract

The Global Flood Awareness System (GloFAS) is a preoperational suite performing daily streamflow simulations to detect severe floods in large river basins. GloFAS defines the severity of a flood event with respect to thresholds estimated based on model-simulated streamflow climatology. Hence, determining accurate and consistent critical thresholds is important for its skillful flood forecasting. In this work, streamflow climatologies derived from two global meteorological inputs were compared, and their impacts on global flood forecasting were assessed. The first climatology is based on precipitation-corrected reanalysis data (ERA-Interim), which is currently used in the operational GloFAS forecast, while the second is derived from reforecasts that are routinely produced using the latest weather model. The results of the comparison indicate that 1) flood thresholds derived from the two datasets have substantial dissimilarities with varying characteristics across different regions of the globe; 2) the differences in the thresholds have a spatially variable impact on the severity classification of a flood; and 3) ERA-Interim produced lower flood threshold exceedance probabilities (and flood detection rates) than the reforecast for several large rivers at short forecast lead times, where the uncertainty in the meteorological forecast is smaller. Overall, it was found that the use of reforecasts, instead of ERA-Interim, marginally improved the flood detection skill of GloFAS forecasts.

Denotes Open Access content.

Corresponding author address: Feyera A. Hirpa, Institute of Environment and Sustainability, European Commission Joint Research Centre, Via Enrico Fermi 2749 TP 122, I-21027 Ispra, Italy. E-mail: feyera-aga.hirpa@jrc.ec.europa.eu
Save
  • Alfieri, L., Burek P. , Dutra E. , Krzeminski B. , Muraro D. , Thielen J. , and Pappenberger F. , 2013: GloFAS—Global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci., 17, 11611175, doi:10.5194/hess-17-1161-2013.

    • Search Google Scholar
    • Export Citation
  • Alfieri, L., Pappenberger F. , and Wetterhall F. , 2014: The extreme runoff index for flood early warning in Europe. Nat. Hazards Earth Syst. Sci., 14, 15051515, doi:10.5194/nhess-14-1505-2014.

    • Search Google Scholar
    • Export Citation
  • Alsdorf, D. E., Rodríguez E. , and Lettenmaier D. P. , 2007: Measuring surface water from space. Rev. Geophys., 45, RG2002, doi:10.1029/2006RG000197.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Beljaars A. , Scipal K. , Viterbo P. , van den Hurk B. , Hirschi M. , and Betts A. K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Boussetta S. , Lopez P. , and Ferranti L. , 2010: Evaluation of ERA-Interim and ERA-Interim-GPCP-rescaled precipitation over the U.S.A. ERA Rep. Series 5, ECMWF, 10 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2010/7926-evaluation-era-interim-and-era-interim-gpcp-rescaled-precipitation-over-usa.pdf.]

  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land water resources dataset. Hydrol. Earth Syst. Sci., 19, 389407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Bartholmes, J. C., Thielen J. , Ramos M. H. , and Gentilini S. , 2009: The European Flood Alert System EFAS—Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci., 13, 141153, doi:10.5194/hess-13-141-2009.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., Dee D. , Fielding K. , Fuentes M. , Kallberg P. , Kobayashi S. , and Uppala S. , 2009: The ERA-Interim archive. ERA Rep. Series 1, ECMWF, 16 pp.

  • Betts, A. K., Köhler M. , and Zhang Y.-C. , 2009: Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J. Geophys. Res., 114, D02101, doi:10.1029/2008JD010761.

    • Search Google Scholar
    • Export Citation
  • Brakenridge, G. R., 2014: Global active archive of large flood events. Dartmouth Flood Observatory, University of Colorado, accessed 2 October 2014. [Available online at http://floodobservatory.colorado.edu/Archives/index.html.]

  • Brakenridge, G. R., Cohen S. , Kettner A. J. , De Groeve T. , Nghiem S. V. , Syvitski J. P. M. , and Fekete B. M. , 2012: Calibration of satellite measurements of river discharge using a global hydrology model. J. Hydrol., 475, 123136, doi:10.1016/j.jhydrol.2012.09.035.

    • Search Google Scholar
    • Export Citation
  • Burek, P., Van Der Knijff J. , and De Roo A. , 2013: LISFLOOD, distributed water balance and flood simulation model: Revised user manual. JRC Tech. Rep., 138 pp.

  • Chow, V. T., Maidment D. R. , and Mays L. M. , 1988: Applied Hydrology. McGraw-Hill, 572 pp.

  • Cloke, H. L., and Pappenberger F. , 2009: Ensemble flood forecasting: A review. J. Hydrol., 375, 613626, doi:10.1016/j.jhydrol.2009.06.005.

    • Search Google Scholar
    • Export Citation
  • CRED, 2014: Centre for Research on the Epidemiology of Disasters Emergency database. Accessed 15 October 2014. [Available online at http://www.emdat.be/.]

  • Dale, M., Wicks J. , Mylne J. , Pappenberger F. , Laeger S. , and Taylor S. , 2014: Probabilistic flood forecasting and decision-making: An innovative risk-based approach. Nat. Hazards, 70, 159172, doi:10.1007/s11069-012-0483-z.

    • Search Google Scholar
    • Export Citation
  • Dankers, R., and Feyen L. , 2008: Climate change impact on flood hazard in Europe: An assessment based on high resolution climate simulations. J. Geophys. Res., 113, D19105, doi:10.1029/2007JD009719.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Alkama R. , Papa F. , Faroux S. , Douville H. , and Prigent C. , 2012: Global off-line evaluation of the ISBA-TRIP flood model. Climate Dyn., 38, 13891412, doi:10.1007/s00382-011-1054-9.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • De Groeve, T., and Riva P. , 2009: Global real-time detection of major floods using passive microwave remote sensing. Proc. 33rd Int. Symp. on Remote Sensing of Environment, Stresa, Italy, ISRSE, 587–590.

  • De Groeve, T., and Coauthors, 2015: Joining forces in a global flood partnership. Bull. Amer. Meteor. Soc., 96, ES97ES100, doi:10.1175/BAMS-D-14-00147.1.

    • Search Google Scholar
    • Export Citation
  • Durand, M., Rodríguez E. , Alsdorf D. E. , and Trigg E. , 2010: Estimating river depth from remote sensing swath interferometry measurements of river height, slope, and width. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., 3, 2031, doi:10.1109/JSTARS.2009.2033453.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Balsamo G. , Viterbo P. , Miranda P. M. A. , Beljaars A. , Schar C. , and Elder K. , 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916, doi:10.1175/2010JHM1249.1.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2015: Changes in ECMWF models. Accessed 9 September 2015. [Available online at http://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model.]

  • FAO, 2003: Digital soil map of the world and derived soil properties. FAO Land and Water Digital Media Series 1, CD-ROM.

  • Forbes, R., and Tompkins A. , 2011: An improved representation of cloud and precipitation. ECMWF Newsletter, No. 129, ECMWF, Reading, United Kingdom, 13–18.

  • Forbes, R., Haiden T. , and Magnusson L. , 2015: Improvements in IFS forecasts of heavy precipitation, ECMWF Newsletter, No. 144, ECMWF, Reading, United Kingdom, 21–26.

  • GDACS, 2014: Global Disaster Alert and Coordination System. Accessed 9 October 2014. [Available online at http://www.gdacs.org/alerts/default.aspx?profile=archive.]

  • Gumbel, E. J., 1941: The return period of flood flows. Ann. Math. Stat., 12 (2), 163190.

  • Haiden, T., and Coauthors, 2014: ECMWF forecast performance during the June 2013 flood in central Europe. ECMWF Tech. Memo. 723, 34 pp. [Available online at http://www.ecmwf.int/en/elibrary/9731-ecmwf-forecast-performance-during-june-2013-flood-central-europe.]

  • Hirpa, F. A., Hopson T. , De Groeve T. , Brakenridge G. R. , Gebremichael M. , and Restrepo P. J. , 2013: Upstream satellite remote sensing for river discharge prediction: Application to major rivers in South Asia. Remote Sens. Environ., 131, 140151, doi:10.1016/j.rse.2012.11.013.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Gu G. , 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jha, A. K., Bloch R. , and Lamond J. , 2012: Cities and Flooding: A Guide to Integrated Flood Risk Management for the 21st Century. World Bank, 632 pp., doi:10.1596/978-0-8213-8866-2.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H., Yeh P. J.-F. , Oki T. , and Kanae S. , 2009: Role of rivers in the seasonal variations of terrestrial water storage over global basins. Geophys. Res. Lett., 36, L17402, doi:10.1029/2009GL039006.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., Verdin K. , and Jarvis A. , 2008: New global hydrography derived from spaceborne elevation data. Eos, Trans. Amer. Geophys. Union, 89, 9394, doi:10.1029/2008EO100001.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., Reed B. C. , Brown J. F. , Ohlen D. O. , Zhu Z. , Youing L. , and Merchant J. W. , 2000: Development of a global land cover characteristics database and IGBP DISCover from the 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330, doi:10.1080/014311600210191.

    • Search Google Scholar
    • Export Citation
  • McCuen, R. H., 2004: Hydrologic Design and Analysis. Prentice Hall, 888 pp.

  • NASA/NGA, 2003: SRTM water body data product specific guidance, version 2.0. Accessed 15 August 2014. [Available online at http://dds.cr.usgs.gov/srtm/version2_1/SWBD/SWBD_Documentation/SWDB_Product_Specific_Guidance.pdf.]

  • Pagano, T. C., and Coauthors, 2014: Challenges of operational river forecasting. J. Hydrometeor., 15, 16921707, doi:10.1175/JHM-D-13-0188.1.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., and Brown J. D. , 2013: HP today: On the pursuit of (im)perfection in flood forecasting. Hydrol. Processes, 27, 162163, doi:10.1002/hyp.9465.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., Dutra E. , Wetterhall F. , and Cloke H. L. , 2012: Deriving global flood hazard maps of fluvial floods through a physical model cascade. Hydrol. Earth Syst. Sci., 16, 41434156, doi:10.5194/hess-16-4143-2012.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., Wetterhall F. , Dutra E. , Di Giuseppe F. , Bogner K. , Alfieri L. , and Cloke H. L. , 2013: Seamless forecasting of extreme events on a global scale. IAHS Publ., 359, 310.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., and Coauthors, 2014: HEPEX—Operational HEPS systems around the globe. Accessed 3 October 2014. [Available online at http://hepex.irstea.fr/operational-heps-systems-around-the-globe/.]

  • Pappenberger, F., Cloke H. L. , Wetterhall F. , Parker D. J. , Richardson D. , and Thielen J. , 2015: The monetary benefit of early flood warnings in Europe. Environ. Sci. Policy, 51, 278291, doi:10.1016/j.envsci.2015.04.016.

    • Search Google Scholar
    • Export Citation
  • Reed, S., Schaake J. , and Zhang Z. , 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420, doi:10.1016/j.jhydrol.2007.02.015.

    • Search Google Scholar
    • Export Citation
  • Revilla-Romero, B., Beck H. E. , Burek P. , Salamon P. , de Roo A. , and Thielen J. : 2015a: Filling the gaps: Calibrating a rainfall–runoff model using satellite-derived surface water extent. Remote Sens. Environ., 171, 118131, doi:10.1016/j.rse.2015.10.022.

    • Search Google Scholar
    • Export Citation
  • Revilla-Romero, B., Hirpa F. A. , Thielen J. , Salamon P. , Brakenridge G. R. , Pappenberger F. , and De Groeve T. , 2015b: On the use of global flood forecasts and satellite-derived inundation maps for flood monitoring in data-sparse regions. Remote Sens., 7, 15 70215 728, doi:10.3390/rs71115702.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. C., Fewtrell T. J. , O’Loughlin F. , Pappenberger F. , Bates P. B. , Freer J. E. , and Cloke H. L. , 2014: The impact of uncertain precipitation data on insurance loss estimates using a flood catastrophe model. Hydrol. Earth Syst. Sci., 18, 23052324, doi:10.5194/hess-18-2305-2014.

    • Search Google Scholar
    • Export Citation
  • Schumann, G. J. P., Andreadis K. M. , and Bates P. D. , 2014: Downscaling coarse grid hydrodynamic model simulations over large domains. J. Hydrol., 508, 289298, doi:10.1016/j.jhydrol.2013.08.051.

    • Search Google Scholar
    • Export Citation
  • Thielen, J., Bartholmes J. , Ramos M.-H. , and de Roo A. , 2009: The European Flood Alert System—Part 1: Concept and development. Hydrol. Earth Syst. Sci., 13, 125140, doi:10.5194/hess-13-125-2009.

    • Search Google Scholar
    • Export Citation
  • Thiemig, V., Bisselink B. , Pappenberger F. , and Thielen J. , 2014: A pan-African flood forecasting system. Hydrol. Earth Syst. Sci., 11, 55595597, doi:10.5194/hessd-11-5559-2014.

    • Search Google Scholar
    • Export Citation
  • UNISDR, 2015: Sendai Framework for Disaster Risk Reduction 2015–2030. United Nations, 37 pp. [Available online at http://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf.]

  • Van Der Knijff, J. M., Younis J. , and De Roo A. P. J. , 2010: LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci., 24, 189212, doi:10.1080/13658810802549154.

    • Search Google Scholar
    • Export Citation
  • Ward, P. J., and Coauthors, 2015: Usefulness and limitations of global flood risk models. Nat. Climate Change, 5, 712715, doi:10.1038/nclimate2742.

    • Search Google Scholar
    • Export Citation
  • Winsemius, H. C., Van Beek L. P. H. , Jongman B. , Ward P. J. , and Bouwman A. , 2013: A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci., 17, 18711892, doi:10.5194/hess-17-1871-2013.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and Lettenmaier D. P. , 2008: An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett., 35, L14401, doi:10.1029/2008GL034648.

    • Search Google Scholar
    • Export Citation
  • Wu, H., Kimball J. S. , Li H. , Huang M. , Leung L. R. , and Adler R. F. , 2012: A new global river network database for macroscale hydrologic modeling. Water Resour. Res., 48, W09701, doi:10.1029/2012WR012313.

    • Search Google Scholar
    • Export Citation
  • Wu, H., Adler R. F. , Thian Y. , Huffman G. J. , Li H. , and Wang J. , 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 26932717, doi:10.1002/2013WR014710.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., de Almeida G. A. M. , and Bates P. D. , 2013: Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map. Water Resour. Res., 49, 72217235, doi:10.1002/wrcr.20552.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., O’Loughlin F. , Trigg M. A. , Miller Z. F. , Pavelsky T. M. , and Bates P. D. , 2014: Development of the global width database for large rivers. Water Resour. Res., 50, 34673480, doi:10.1002/2013WR014664.

    • Search Google Scholar
    • Export Citation
  • Yossef, N. C., Winsemius H. , Weerts A. , van Beek R. , and Bierkens M. F. P. , 2013: Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing. Water Resour. Res., 49, 46874699, doi:10.1002/wrcr.20350.

    • Search Google Scholar
    • Export Citation
  • Zsoter, E., Pappenberger F. , and Richardson D. , 2014: Sensitivity of model climate to sampling configurations and the impact on the Extreme Forecast Index. Meteor. Appl., 22, 236247, doi:10.1002/met.1447.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 743 244 13
PDF Downloads 543 167 8