Effects of Roughness Length Parameterizations on Regional-Scale Land Surface Modeling of Alpine Grasslands in the Yangtze River Basin

Ying Huang Faculty of Geo-Information Science and Earth Observation, and Faculty of Engineering Technology, University of Twente, Enschede, Netherlands

Search for other papers by Ying Huang in
Current site
Google Scholar
PubMed
Close
,
M. Suhyb Salama Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands

Search for other papers by M. Suhyb Salama in
Current site
Google Scholar
PubMed
Close
,
Zhongbo Su Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands

Search for other papers by Zhongbo Su in
Current site
Google Scholar
PubMed
Close
,
Rogier van der Velde Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands

Search for other papers by Rogier van der Velde in
Current site
Google Scholar
PubMed
Close
,
Donghai Zheng Faculty of Geo-Information Science and Earth Observation, and Faculty of Engineering Technology, University of Twente, Enschede, Netherlands

Search for other papers by Donghai Zheng in
Current site
Google Scholar
PubMed
Close
,
Maarten S. Krol Faculty of Engineering Technology, University of Twente, Enschede, Netherlands

Search for other papers by Maarten S. Krol in
Current site
Google Scholar
PubMed
Close
,
Arjen Y. Hoekstra Faculty of Engineering Technology, University of Twente, Enschede, Netherlands

Search for other papers by Arjen Y. Hoekstra in
Current site
Google Scholar
PubMed
Close
, and
Yunxuan Zhou State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China

Search for other papers by Yunxuan Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Current land surface models (LSMs) tend to largely underestimate the daytime land surface temperature for high-altitude regions. This is partly because of underestimation of heat transfer resistance, which may be resolved through adequate parameterization of roughness lengths for momentum and heat transfer. In this paper, the regional-scale effects of the roughness length parameterizations for alpine grasslands are addressed and the performance of the Noah LSM using the updated roughness lengths compared to the original ones is assessed. The simulations were verified with various satellite products and validated with ground-based observations. More specifically, four experimental setups were designed using two roughness length schemes with two different parameterizations of (original and updated). These experiments were conducted in the source region of the Yangtze River during the period 2005–10 using the Noah LSM. The results show that the updated parameterizations of roughness lengths reduce the mean biases of the simulated daytime in spring, autumn, and winter by up to 2.7 K, whereas larger warm biases are produced in summer. Moreover, model efficiency coefficients (Nash–Sutcliffe) of the monthly runoff results are improved by up to 26.3% when using the updated roughness parameterizations. In addition, the spatial effects of the roughness length parameterizations on the simulations are discussed. This study stresses the importance of proper parameterizations of and for LSMs and highlights the need for regional adaptation of the and values.

Corresponding author address: Ying Huang, Faculty of Geo-Information Science and Earth Observation, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands. E-mail: yinghuangje@gmail.com

Abstract

Current land surface models (LSMs) tend to largely underestimate the daytime land surface temperature for high-altitude regions. This is partly because of underestimation of heat transfer resistance, which may be resolved through adequate parameterization of roughness lengths for momentum and heat transfer. In this paper, the regional-scale effects of the roughness length parameterizations for alpine grasslands are addressed and the performance of the Noah LSM using the updated roughness lengths compared to the original ones is assessed. The simulations were verified with various satellite products and validated with ground-based observations. More specifically, four experimental setups were designed using two roughness length schemes with two different parameterizations of (original and updated). These experiments were conducted in the source region of the Yangtze River during the period 2005–10 using the Noah LSM. The results show that the updated parameterizations of roughness lengths reduce the mean biases of the simulated daytime in spring, autumn, and winter by up to 2.7 K, whereas larger warm biases are produced in summer. Moreover, model efficiency coefficients (Nash–Sutcliffe) of the monthly runoff results are improved by up to 26.3% when using the updated roughness parameterizations. In addition, the spatial effects of the roughness length parameterizations on the simulations are discussed. This study stresses the importance of proper parameterizations of and for LSMs and highlights the need for regional adaptation of the and values.

Corresponding author address: Ying Huang, Faculty of Geo-Information Science and Earth Observation, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands. E-mail: yinghuangje@gmail.com
Save
  • Balsamo, G., Beljaars A. , Scipal K. , Viterbo P. , van den Hurk B. , Hirschi M. , and Betts A. K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History and Applications. Springer, 319 pp.

  • Brutsaert, W., 1998: Land-surface water vapor and sensible heat flux: Spatial variability, homogeneity, and measurement scales. Water Resour. Res., 34, 24332442, doi:10.1029/98WR01340.

    • Search Google Scholar
    • Export Citation
  • Cai, X., Yang Z.-L. , David C. H. , Niu G.-Y. , and Rodell M. , 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River basin. J. Geophys. Res. Atmos., 119, 23–38, doi:10.1002/2013JD020792.

  • Campbell, G. S., 1974: A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci., 117, 311314, doi:10.1097/00010694-197406000-00001.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Zhang Y. , 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Janjić Z. , and Mitchell K. , 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85, 391421, doi:10.1023/A:1000531001463.

    • Search Google Scholar
    • Export Citation
  • Chen, L., and Frauenfeld O. W. , 2014: Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models. J. Climate, 27, 39203937, doi:10.1175/JCLI-D-13-00465.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Yang K. , Zhou D. , Qin J. , and Guo X. , 2010: Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeor., 11, 9951006, doi:10.1175/2010JHM1185.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Yang K. , He J. , Qin J. , Shi J. , Du J. , and He Q. , 2011: Improving land surface temperature modeling for dry land of China. J. Geophys. Res., 116, D20104, doi:10.1029/2011JD015921.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Yang K. , Qin J. , Zhao L. , Tang W. , and Han M. , 2013: Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos., 118, 44664475, doi:10.1002/jgrd.50301.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and Duchon C. E. , 1999: An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteor., 38, 474480, doi:10.1175/1520-0450(1999)038<0474:AIPFEE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Koster R. D. , and Guo Z. , 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, doi:10.1175/JHM532.1.

    • Search Google Scholar
    • Export Citation
  • Fu, C. B., and Wen G. , 2002: Several issues on aridification in the northern China (in Chinese). Climatic Environ. Res., 7, 2229.

  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 336 pp.

  • Gulden, L. E., Rosero E. , Yang Z.-L. , Rodell M. , Jackson C. S. , Niu G.-Y. , Yeh P. J.-F. , and Famiglietti J. , 2007: Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile? Geophys. Res. Lett., 34, L09402, doi:10.1029/2007GL029804.

    • Search Google Scholar
    • Export Citation
  • He, J., and Yang K. , 2011: China meteorological forcing dataset. Cold and Arid Regions Science Data Center at Lanzhou, accessed 4 March 2016, doi:10.3972/westdc.002.2014.db.

  • Hogue, T. S., Bastidas L. , Gupta H. , Sorooshian S. , Mitchell K. , and Emmerich W. , 2005: Evaluation and transferability of the Noah land surface model in semiarid environments. J. Hydrometeor., 6, 6884, doi:10.1175/JHM-402.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., van Beek L. P. H. , and Bierkens M. F. P. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, doi:10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Koike, T., 2004: The Coordinated Enhanced Observing Period: An initial step for integrated global water cycle observation. WMO Bull., 53, 115121.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and Swenson S. C. , 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., Tewari M. , Chen F. , Alfieri J. G. , and Niyogi D. , 2008: Evaluation of the Noah land surface model using data from a fair-weather IHOP 2002 day with heterogeneous surface fluxes. Mon. Wea. Rev., 136, 49154941, doi:10.1175/2008MWR2354.1.

    • Search Google Scholar
    • Export Citation
  • LPDAAC, 2001: The MODIS/Terra LST/E Daily L3 Global 0.05Deg CMG, Version 4-5.5. NASA EOSDIS Land Processes DAAC, accessed 6 March 2014, doi:10.5067/ASTER/AST_L1B.003.

  • Ma, Y., Tsukamoto O. , Wang J. , Ishikawa H. , and Tamagawa I. , 2002: Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau. Prog. Nat. Sci., 12, 3640.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., Menenti M. , Feddes R. , and Wang J. , 2008: Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths. J. Geophys. Res., 113, D08113, doi:10.1029/2007JD009124.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., and Fu C. , 2006: Some evidence of drying trend over northern China from 1951 to 2004. Chinese Sci. Bull., 51, 29132925, doi:10.1007/s11434-006-2159-0.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Ek M. , 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222234, doi:10.1175/1520-0450(1984)023<0222:TIOASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Pan H. , 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor., 29, 120, doi:10.1007/BF00119116.

  • Malik, M. J., van der Velde R. , Vekerdy Z. , and Su Z. , 2014: Improving modeled snow albedo estimates during the spring melt season. J. Geophys. Res. Atmos., 119, 73117331, doi:10.1002/2013JD021344.

    • Search Google Scholar
    • Export Citation
  • Martano, P., 2000: Estimation of surface roughness length and displacement height from single-level sonic anemometer data. J. Appl. Meteor., 39, 708715, doi:10.1175/1520-0450(2000)039<0708:EOSRLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., Arnold J. G. , Van Liew M. W. , Bingner R. L. , Harmel R. D. , and Veith T. L. , 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Amer. Soc. Agric. Biol. Eng., 50, 885900, doi:10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , and Gulden L. E. , 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110, D21106, doi:10.1029/2005JD006111.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Salama, M. S., Van der Velde R. , Zhong L. , Ma Y. , Ofwono M. , and Su Z. , 2012: Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008. Climatic Change, 114, 769781, doi:10.1007/s10584-012-0427-3.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Koren V. I. , Duan Q.-Y. , Mitchell K. , and Chen F. , 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, doi:10.1029/95JD02892.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., Schmugge T. , Kustas W. P. , and Massman W. J. , 2001: An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteor., 40, 19331951, doi:10.1175/1520-0450(2001)040<1933:AEOTMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Su, Z., de Rosnay P. , Wen J. , Wang L. , and Zeng Y. , 2013: Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan Plateau. J. Geophys. Res. Atmos., 118, 53045318, doi:10.1002/jgrd.50468.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 1999: Diurnal variations of thermal roughness height over a grassland. Bound.-Layer Meteor., 92, 407427, doi:10.1023/A:1002071421362.

    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., 2012: GRACE monthly land water mass grids NETCDF release 5.0, Ver. 5.0. PO.DAAC, accessed 6 January 2014, doi:10.5067/TELND-NC005.

  • Swenson, S. C., and Wahr J. , 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285.

    • Search Google Scholar
    • Export Citation
  • Xu, X., and Coauthors, 2008: A new integrated observational system over the Tibetan Plateau. Bull. Amer. Meteor. Soc., 89, 14921496, doi:10.1175/2008BAMS2557.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and Wu G.-X. , 2006: Effects of the Tibetan Plateau. The Asian Monsoon, Springer, 513–549.

  • Yanai, M., Li C. , and Song Z. , 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351.

    • Search Google Scholar
    • Export Citation
  • Yang, K., Koike T. , and Yang D. , 2003: Surface flux parameterization in the Tibetan Plateau. Bound.-Layer Meteor., 106, 245262, doi:10.1023/A:1021152407334.

    • Search Google Scholar
    • Export Citation
  • Yang, K., Koike T. , Ye B. , and Bastidas L. , 2005: Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. J. Geophys. Res., 110, D08101, doi:10.1029/2004JD005500.

    • Search Google Scholar
    • Export Citation
  • Yang, K., Koike T. , and Ye B. , 2006: Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric. For. Meteor., 137, 4355, doi:10.1016/j.agrformet.2006.02.001.

    • Search Google Scholar
    • Export Citation
  • Yang, K., and Coauthors, 2007: Initial CEOP-based review of prediction skill of operational general circulation models and land surface models. J. Meteor. Soc. Japan, 85A, 99116.

    • Search Google Scholar
    • Export Citation
  • Yang, K., and Coauthors, 2008: Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. J. Appl. Meteor. Climatol., 47, 276290, doi:10.1175/2007JAMC1547.1.

    • Search Google Scholar
    • Export Citation
  • Yang, K., Chen Y. Y. , and Qin J. , 2009: Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci., 13, 687701, doi:10.5194/hess-13-687-2009.

    • Search Google Scholar
    • Export Citation
  • Yang, S. L., and Coauthors, 2010: Temporal variations in water resources in the Yangtze River (Changjiang) over the Industrial Period based on reconstruction of missing monthly discharges. Water Resour. Res., 46, W10516, doi:10.1029/2009WR008589.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, doi:10.1029/2010JD015140.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Wu L. , and Dong W. , 2011: Land–atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res., 116, D05117, doi:10.1029/2010JD014714.

    • Search Google Scholar
    • Export Citation
  • Zheng, D., Van Der Velde R. , Su Z. , Booij M. J. , and Hoekstra A. Y. , 2014: Assessment of roughness length schemes implemented within the Noah land surface model for high-altitude regions. J. Hydrometeor., 15, 921937, doi:10.1175/JHM-D-13-0102.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, W., Wei H. , Wang Z. , Zeng X. , Meng J. , Ek M. , Mitchell K. , and Derber J. , 2012: Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J. Geophys. Res., 117, D06117, doi:10.1029/2011JD015901.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution Theory and Simulation, Vol. 1, Air Pollution III, edited by H. Power, N. Moussiopoulos, and C. A. Brebbia, Computational Mechanics Publications, 53–60.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 402 112 10
PDF Downloads 196 66 3