Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians

Xinxuan Zhang Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Xinxuan Zhang in
Current site
Google Scholar
PubMed
Close
,
Emmanouil N. Anagnostou Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Emmanouil N. Anagnostou in
Current site
Google Scholar
PubMed
Close
, and
Humberto Vergara School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Humberto Vergara in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Satellite-retrieved precipitation has the potential to support flood modeling in mountainous areas. However, to reach this potential satellite estimates need to be corrected for the severe underestimation exhibited in orography-induced heavy precipitation events (HPEs). This paper assesses an existing satellite precipitation error correction technique driven by high-resolution numerical weather prediction (NWP) simulations of HPEs in complex terrain. The study is based on NOAA Climate Prediction Center morphing technique (CMORPH) high-resolution precipitation estimates of six such events induced by hurricane landfalls in the southern Appalachian mountainous region. A distributed hydrological model (Coupled Routing and Excess Storage model) is applied to evaluate the impact of the proposed satellite precipitation error correction on flood simulations for 20 basins of various sizes in this mountainous region. The results demonstrate significant improvements due to the NWP-based adjustment technique in terms of both the precipitation error characteristics and corresponding runoff simulations. These improvements are shown to be comparable to those from the postprocessed gauge-adjusted CMORPH precipitation product, which is promising for advancing hydrologic uses of satellite rainfall in mountainous areas lacking ground observations.

Corresponding author address: Emmanouil Anagnostou, Civil and Environmental Engineering, University of Connecticut, Unit 2037, Storrs, CT 06269. E-mail: manos@engr.uconn.edu

Abstract

Satellite-retrieved precipitation has the potential to support flood modeling in mountainous areas. However, to reach this potential satellite estimates need to be corrected for the severe underestimation exhibited in orography-induced heavy precipitation events (HPEs). This paper assesses an existing satellite precipitation error correction technique driven by high-resolution numerical weather prediction (NWP) simulations of HPEs in complex terrain. The study is based on NOAA Climate Prediction Center morphing technique (CMORPH) high-resolution precipitation estimates of six such events induced by hurricane landfalls in the southern Appalachian mountainous region. A distributed hydrological model (Coupled Routing and Excess Storage model) is applied to evaluate the impact of the proposed satellite precipitation error correction on flood simulations for 20 basins of various sizes in this mountainous region. The results demonstrate significant improvements due to the NWP-based adjustment technique in terms of both the precipitation error characteristics and corresponding runoff simulations. These improvements are shown to be comparable to those from the postprocessed gauge-adjusted CMORPH precipitation product, which is promising for advancing hydrologic uses of satellite rainfall in mountainous areas lacking ground observations.

Corresponding author address: Emmanouil Anagnostou, Civil and Environmental Engineering, University of Connecticut, Unit 2037, Storrs, CT 06269. E-mail: manos@engr.uconn.edu
Save
  • Barros, A. P., and Tao K. , 2008: A space-filling algorithm to extrapolate narrow-swath instantaneous TRMM microwave rain-rate estimates using thermal IR imagery. J. Atmos. Oceanic Technol., 25, 19011920, doi:10.1175/2008JTECHA1019.1.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., Joshi M. , Putkonen J. , and Burbank D. W. , 2000: A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett., 27, 36833686, doi:10.1029/2000GL011827.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., and Gebremichael M. , 2011: Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci., 15, 11471155, doi:10.5194/hess-15-1147-2011.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., Gebremichael M. , Ghebremichael L. T. , and Bayissa Y. A. , 2012: Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J. Hydrometeor., 13, 338350, doi:10.1175/2011JHM1292.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events? J. Hydrol., 506, 413, doi:10.1016/j.jhydrol.2012.12.026.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., Maidment D. R. , and Mays L. W. , 1988: Applied Hydrology. McGraw-Hill, New York, 572 pp.

  • Derin, Y., and Yilmaz K. K. , 2014: Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeor., 15, 14981516, doi:10.1175/JHM-D-13-0191.1.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Chidzambwa S. , Ceccato P. , Connor S. J. , and Ropelewski C. F. , 2008: Validation of high‐resolution satellite rainfall products over complex terrain. Int. J. Remote Sens., 29, 40974110, doi:10.1080/01431160701772526.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Ruiz F. , Connor S. J. , and Ceccato P. , 2010: Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteor. Climatol., 49, 10041014, doi:10.1175/2009JAMC2260.1.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., Breidenbach J. P. , Seo D. J. , Miller D. A. , and Miller T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, Y. C., and Liu M. F. , 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837, doi:10.5194/hess-17-837-2013.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The great Colorado flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, doi:10.1175/BAMS-D-13-00241.1.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Hong Y. , Flamig Z. L. , Wang J. , Vergara H. , and Anagnostou E. N. , 2011: Hydrologic evaluation of rainfall estimates from radar, satellite, gauge, and combinations on Ft. Cobb basin, Oklahoma. J. Hydrometeor., 12, 973988, doi:10.1175/2011JHM1287.1.

    • Search Google Scholar
    • Export Citation
  • Heidke, P., 1926: Berechnung des Erfolges und der Güte der Windstärkevorhersagen im Sturmwarnungsdienst. Geogr. Ann., 8, 301349.

  • Hirpa, F. A., Gebremichael M. , and Hopson T. , 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051, doi:10.1175/2009JAMC2298.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., and Xie P. , 1999: CAMS–OPI: A global satellite–rain gauge merged product for real-time precipitation monitoring applications. J. Climate, 12, 33353342, doi:10.1175/1520-0442(1999)012<3335:COAGSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koren, V., Smith M. , and Duan Q. , 2003: Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall–runoff models. Calibration of Watershed Models, Water Science and Application Series, Vol. 6, Amer. Geophys. Union, 239–254.

  • Lang, T. J., and Barros A. P. , 2002: An investigation of the onsets of the 1999 and 2000 monsoons in central Nepal. Mon. Wea. Rev., 130, 12991316, doi:10.1175/1520-0493(2002)130<1299:AIOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/refs/stage2-4.19hydro.pdf.]

  • Mei, Y., Anagnostou E. N. , Nikolopoulos E. I. , and Borga M. , 2014: Error analysis of satellite precipitation products in mountainous basins. J. Hydrometeor., 15, 17781793, doi:10.1175/JHM-D-13-0194.1.

    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., Rajagopalan B. , Clark M. P. , Ikeda K. , and Rasmussen R. M. , 2015: Statistical postprocessing of high-resolution regional climate model output. Mon. Wea. Rev., 143, 15331553, doi:10.1175/MWR-D-14-00159.1.

    • Search Google Scholar
    • Export Citation
  • NCAR, 2012: Weather Research and Forecasting ARW: Version 3 modeling system user’s guide. NCAR, 384 pp.[Available online at http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.4/ARWUsersGuideV3.pdf.]

  • Nikolopoulos, E. I., Bartsotas N. , Anagnostou E. N. , and Kallos G. , 2015: Using high-resolution numerical weather forecasts to improve remotely sensed rainfall estimates: The case of the 2013 Colorado flash flood. J. Hydrometeor., 16, 17421751, doi:10.1175/JHM-D-14-0207.1.

    • Search Google Scholar
    • Export Citation
  • Pan, M., Li H. , and Wood E. , 2010: Assessing the skill of satellite‐based precipitation estimates in hydrologic applications. Water Resour. Res., 46, W09535, doi:10.1029/2009WR008290.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and Barros A. P. , 2010: Assessing satellite-based precipitation estimates in the southern Appalachian mountains using rain gauges and TRMM PR. Adv. Geosci., 25, 143153, doi:10.5194/adgeo-25-143-2010.

    • Search Google Scholar
    • Export Citation
  • Romilly, T. G., and Gebremichael M. , 2011: Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci., 15, 15051514, doi:10.5194/hess-15-1505-2011.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stampoulis, D., and Anagnostou E. N. , 2012: Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeor., 13, 588603, doi:10.1175/JHM-D-11-086.1.

    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., Anagnostou E. N. , and Nikolopoulos E. I. , 2013: Assessment of high-resolution satellite-based rainfall estimates over the Mediterranean during heavy precipitation events. J. Hydrometeor., 14, 15001514, doi:10.1175/JHM-D-12-0167.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Field P. R. , Hall W. D. , and Rasmussen R. M. , 2006: A new bulk microphysical parameterization for WRF (& MM5). Proc. Seventh Weather Research and Forecasting Model Workshop, Boulder, CO, NCAR, 11 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/Session05/5_3_Thompson.pdf.]

  • Vergara, H., Hong Y. , Gourley J. J. , Anagnostou E. N. , Maggioni V. , Stampoulis D. , and Kirstetter P. E. , 2014: Effects of resolution of satellite-based rainfall estimates on hydrologic modeling skill at different scales. J. Hydrometeor., 15, 593613, doi:10.1175/JHM-D-12-0113.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2011: The Coupled Routing and Excess Storage (CREST) distributed hydrological model. Hydrol. Sci. J., 56, 8498, doi:10.1080/02626667.2010.543087.

    • Search Google Scholar
    • Export Citation
  • Wilk, J., Kniveton D. , Andersson L. , Layberry R. , Todd M. C. , Hughes D. , Ringrose S. , and Vanderpost C. , 2006: Estimating rainfall and water balance over the Okavango River basin for hydrological applications. J. Hydrol., 331, 1829, doi:10.1016/j.jhydrol.2006.04.049.

    • Search Google Scholar
    • Export Citation
  • Xie, P., Yoo S. H. , Joyce R. , and Yarosh Y. , 2011: Bias-corrected CMORPH: A 13-year analysis of high-resolution global precipitation. Geophysical Research Abstracts, Vol. 13, Abstract EGU2011-1809. [Available online at http://meetingorganizer.copernicus.org/EGU2011/EGU2011-1809.pdf.]

  • Zeweldi, D. A., and Gebremichael M. , 2009: Evaluation of CMORPH precipitation products at fine space–time scales. J. Hydrometeor., 10, 300307, doi:10.1175/2008JHM1041.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Anagnostou E. N. , Frediani M. , Solomos S. , and Kallos G. , 2013: Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas. J. Hydrometeor., 14, 18441858, doi:10.1175/JHM-D-12-0174.1.

    • Search Google Scholar
    • Export Citation
  • Zulkafli, Z., Buytaert W. , Onof C. , Manz B. , Tarnavsky E. , Lavado W. , and Guyot J. L. , 2014: A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon river basins. J. Hydrometeor., 15, 581592, doi:10.1175/JHM-D-13-094.1.

    • Search Google Scholar
    • Export Citation