Estimating Uncertainties in High-Resolution Satellite Precipitation Products: Systematic or Random Error?

Viviana Maggioni Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, Fairfax, Virginia

Search for other papers by Viviana Maggioni in
Current site
Google Scholar
PubMed
Close
,
Mathew R. P. Sapiano Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Mathew R. P. Sapiano in
Current site
Google Scholar
PubMed
Close
, and
Robert F. Adler Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Robert F. Adler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study proposes a method to quantify systematic and random components of the error associated with satellite precipitation products. Specifically, the Precipitation Uncertainties for Satellite Hydrology (PUSH) model is expanded to provide an estimate of those components of the root-mean-square error. The framework is tested on the TRMM Multisatellite Precipitation Analysis (TMPA) 3B42, real time (3B42RT), and 3B42, version 7 (3B42V7), products over the contiguous United States, using the NOAA Climate Prediction Center (CPC) Unified gauge product as reference. Results show that 3B42V7 exhibits much smaller errors than the real-time product and that the major component of the error associated with both TMPA 3B42 products is random, as the systematic error is almost completely removed by the bias adjustment applied to the two products. A strong dependence of both systematic and random error components on satellite rain rates—with larger error components at larger rain rates—is observed for both satellite products, which suggests that future satellite bias adjustment procedures should account for this dependence. The resulting error estimates and their random and systematic components allow inferences about the accuracy of these datasets and will enhance their deployment in numerous applications, from hydrological modeling and hazard mitigation to climate change studies and water management policy.

Corresponding author address: Viviana Maggioni, Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Dr., MS-6C1, Fairfax, VA 22030. E-mail: vmaggion@gmu.edu

Abstract

This study proposes a method to quantify systematic and random components of the error associated with satellite precipitation products. Specifically, the Precipitation Uncertainties for Satellite Hydrology (PUSH) model is expanded to provide an estimate of those components of the root-mean-square error. The framework is tested on the TRMM Multisatellite Precipitation Analysis (TMPA) 3B42, real time (3B42RT), and 3B42, version 7 (3B42V7), products over the contiguous United States, using the NOAA Climate Prediction Center (CPC) Unified gauge product as reference. Results show that 3B42V7 exhibits much smaller errors than the real-time product and that the major component of the error associated with both TMPA 3B42 products is random, as the systematic error is almost completely removed by the bias adjustment applied to the two products. A strong dependence of both systematic and random error components on satellite rain rates—with larger error components at larger rain rates—is observed for both satellite products, which suggests that future satellite bias adjustment procedures should account for this dependence. The resulting error estimates and their random and systematic components allow inferences about the accuracy of these datasets and will enhance their deployment in numerous applications, from hydrological modeling and hazard mitigation to climate change studies and water management policy.

Corresponding author address: Viviana Maggioni, Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Dr., MS-6C1, Fairfax, VA 22030. E-mail: vmaggion@gmu.edu
Save
  • AghaKouchak, A., and Mehran A. , 2013: Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resour. Res., 49, 71447149, doi:10.1002/wrcr.20498.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., Habib E. , and Bárdossy A. , 2010: Modeling radar rainfall estimation uncertainties: Random error model. J. Hydrol. Eng., 15, 265274, doi:10.1061/(ASCE)HE.1943-5584.0000185.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., Mehran A. , Norouzi H. , and Behrangi A. , 2012: Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett., 39, L09406, doi:10.1029/2012GL051592.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., Maggioni V. , Nikolopoulos E. I. , Meskele T. , Hossain F. , and Papadopoulos A. , 2010: Benchmarking high-resolution global satellite rainfall products to radar and rain gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens., 48, 16671683, doi:10.1109/TGRS.2009.2034736.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., Turk J. , and Ebert E. , 2005: Pilot Evaluation of High Resolution Precipitation Products (PEHRPP): A contribution to GPM planning. Proc. Fifth Global Precipitation Measurement (GPM) International Planning Workshop, Tokyo, Japan, NASA/JAXA. [Available online at www.radar.aero.osakafu-u.ac.jp/~gsmap/IPWG/PEHRPP.PDF.]

  • Behrangi, A., Khakbaz B. , Jaw T. , AghaKouchak A. , Hsu K. , and Sorooshian S. , 2011: Hydrologic evaluation of satellite precipitation products at basin scale. J. Hydrol., 397, 225237, doi:10.1016/j.jhydrol.2010.11.043.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T., and Sun J. , 2005: Probabilistic and ensemble representations of the uncertainty in an IR/microwave satellite precipitation product. J. Hydrometeor., 6, 10321044, doi:10.1175/JHM454.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., Shi W. , Xie P. , Silva V. B. S. , Kousky V. E. , Higgins R. W. , and Janowiak J. E. , 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and Hossain F. , 2012: Understanding the dependency of satellite rainfall uncertainty on topography and climate for hydrologic model simulation. IEEE Trans. Geosci. Remote Sens., 51, 704718, doi:10.1109/TGRS.2012.2196282.

    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and Hossain F. , 2013: Estimation of satellite rainfall error variance using readily available geophysical features. IEEE Trans. Geosci. Remote Sens., 52, 288304, doi:10.1109/TGRS.2013.2238636.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Aduvala A. V. , and Meselhe E. A. , 2008: Analysis of radar-rainfall error characteristics and implications for streamflow simulation uncertainty. Hydrol. Sci. J., 53, 568587, doi:10.1623/hysj.53.3.568.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Henschke A. , and Adler R. , 2009: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmos. Res., 94, 373388, doi:10.1016/j.atmosres.2009.06.015.

    • Search Google Scholar
    • Export Citation
  • Habib, E., ElSaadani M. , and Haile A. T. , 2012: Climatology-focused evaluation of CMORPH and TMPA satellite rainfall products over the Nile basin. J. Appl. Meteor. Climatol., 51, 21052121, doi:10.1175/JAMC-D-11-0252.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, NOAA, 40 pp. [Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/toc.html.]

  • Hong, Y., Hsu K.-L. , Moradkhani H. , and Sorooshian S. , 2006: Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res., 42, W08421, doi:10.1029/2005WR004398.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Adler R. F. , Negri A. , and Huffman G. J. , 2007: Flood and landslide applications of near real-time satellite rainfall products. Nat. Hazards, 43, 285294, doi:10.1007/s11069-006-9106-x.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Anagnostou E. N. , 2004: Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res., 109, D07102, doi:10.1029/2003JD003986; Corrigendum, 110, D06115, doi:10.1029/2005JD005831.

  • Hossain, F., and Anagnostou E. N. , 2006: Assessment of a multi-dimensional satellite rainfall error model for ensemble generation of satellite rainfall data. IEEE Geosci. Remote Sens. Lett., 3, 419423, doi:10.1109/LGRS.2006.873686.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Huffman G. J. , 2008: Investigating error metrics for satellite rainfall at hydrologically relevant scales. J. Hydrometeor., 9, 563575, doi:10.1175/2007JHM925.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36, 11911201, doi:10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Bolvin D. T. , 2015: TRMM and other data precipitation data set documentation. NASA Doc., 44 pp. [Available online at http://pmm.nasa.gov/sites/default/files/imce/3B42_3B43_doc_V7.pdf.]

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Nelkin E. J. , 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, doi:10.1007/978-90-481-2915-7_1.

  • Krajewski, W. F., Ciach G. J. , McCollum J. R. , and Bacotiu C. , 2000: Initial validation of the Global Precipitation Climatology Project over the United States. J. Appl. Meteor., 39, 10711086, doi:10.1175/1520-0450(2000)039<1071:IVOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., 1987: A Climatology of Global Precipitation. Publ. Climatol., 40 (1), 91 pp.

  • Maggioni, V., Sapiano M. R. P. , Adler R. F. , Tian Y. , and Huffman G. J. , 2014: An error model for uncertainty quantification in high-time resolution precipitation products. J. Hydrometeor., 15, 12741292, doi:10.1175/JHM-D-13-0112.1.

    • Search Google Scholar
    • Export Citation
  • Mehran, A., and AghaKouchak A. , 2014: Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Processes, 28, 22622270, doi:10.1002/hyp.9779.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, doi:10.1175/2008JHM1052.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Fuchs T. , Meyer-Christoffer A. , and Rudolf B. , 2008: Global precipitation analysis products of the GPCC, GPCC Internet Publication, DWD, 12 pp.

  • Tian, Y., Peters-Lidard C. D. , Choudhury B. J. , and Garcia M. , 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 11651183, doi:10.1175/2007JHM859.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, doi:10.1029/2009JD011949.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Huffman G. J. , Adler R. F. , Tang L. , Sapiano M. , Maggioni V. , and Wu H. , 2013: Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett., 40, 20602065, doi:10.1002/grl.50320.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of model. Phys. Geogr., 2, 184194, doi:10.1080/02723646.1981.10642213.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2203 814 251
PDF Downloads 1023 229 12