High-Resolution Simulations of the 2010 Pakistan Flood Event: Sensitivity to Parameterizations and Initialization Time

Francesca Viterbo Institute of Atmospheric Sciences and Climate, National Research Council, Turin, and University of Genova, Genoa, Italy

Search for other papers by Francesca Viterbo in
Current site
Google Scholar
PubMed
Close
,
Jost von Hardenberg Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy

Search for other papers by Jost von Hardenberg in
Current site
Google Scholar
PubMed
Close
,
Antonello Provenzale Institute of Geosciences and Earth Resources, National Research Council, Pisa, Italy

Search for other papers by Antonello Provenzale in
Current site
Google Scholar
PubMed
Close
,
Luca Molini CIMA Foundation, Savona, Italy

Search for other papers by Luca Molini in
Current site
Google Scholar
PubMed
Close
,
Antonio Parodi CIMA Foundation, Savona, Italy

Search for other papers by Antonio Parodi in
Current site
Google Scholar
PubMed
Close
,
Ousmane O. Sy Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Ousmane O. Sy in
Current site
Google Scholar
PubMed
Close
, and
Simone Tanelli Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Simone Tanelli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Estimating the risk of flood-generating precipitation events in high-mountain regions with complex orography is a difficult but crucial task. Quantitative precipitation forecasts (QPFs) at fine resolution are an essential ingredient to address this issue. Along these lines, the ability of the Weather Research and Forecasting (WRF) Model, operated at 3.5-km grid spacing, to reproduce the extreme meteorological event that led to the 2010 Pakistan flood and produced heavy monsoonal rain in the Indus basin is explored. The model results are compared with Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, the available ground measurements, and radar observations from the CloudSat mission. In particular, the sensitivity of the WRF simulations to the use of different convective closures (explicit and Kain–Fritsch) and microphysical parameterizations (WRF single-moment 6-class microphysics scheme and Thompson) is analyzed. The impact of using different initial conditions, associated with a different initialization day, is also examined. The use of the new-generation Distributed Simulation and Stimulation System NASA Earth Observing System Simulators Suite radar simulator allows a more accurate and extensive representation of the mesoscale processes and of the interaction with the complex orography. The results reported here indicate that the quality of the large-scale initial conditions is a prominent factor affecting the possibility of retrieving a realistic representation of this event when using a nonhydrostatic regional model.

Corresponding author address: Francesca Viterbo, Institute of Atmospheric Sciences and Climate, National Research Council, Corso Fiume 4, 10133 Turin, Italy. E-mail: f.viterbo@isac.cnr.it

Abstract

Estimating the risk of flood-generating precipitation events in high-mountain regions with complex orography is a difficult but crucial task. Quantitative precipitation forecasts (QPFs) at fine resolution are an essential ingredient to address this issue. Along these lines, the ability of the Weather Research and Forecasting (WRF) Model, operated at 3.5-km grid spacing, to reproduce the extreme meteorological event that led to the 2010 Pakistan flood and produced heavy monsoonal rain in the Indus basin is explored. The model results are compared with Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, the available ground measurements, and radar observations from the CloudSat mission. In particular, the sensitivity of the WRF simulations to the use of different convective closures (explicit and Kain–Fritsch) and microphysical parameterizations (WRF single-moment 6-class microphysics scheme and Thompson) is analyzed. The impact of using different initial conditions, associated with a different initialization day, is also examined. The use of the new-generation Distributed Simulation and Stimulation System NASA Earth Observing System Simulators Suite radar simulator allows a more accurate and extensive representation of the mesoscale processes and of the interaction with the complex orography. The results reported here indicate that the quality of the large-scale initial conditions is a prominent factor affecting the possibility of retrieving a realistic representation of this event when using a nonhydrostatic regional model.

Corresponding author address: Francesca Viterbo, Institute of Atmospheric Sciences and Climate, National Research Council, Corso Fiume 4, 10133 Turin, Italy. E-mail: f.viterbo@isac.cnr.it
Save
  • Ahasan, M., and Khan A. , 2013: Simulation of a flood producing rainfall event of 29 July 2010 over north-west Pakistan using WRF-ARW Model. Nat. Hazards, 69, 351363, doi:10.1007/s11069-013-0719-6.

    • Search Google Scholar
    • Export Citation
  • Amante, C., and Eakins B. , 2009: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, NOAA NGDC, accessed 17 January 2016, doi:10.7289/V5C8276M.

  • Andermann, C., Bonnet S. , and Gloaguen R. , 2011: Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst., 12, Q07023, doi:10.1029/2011GC003513.

    • Search Google Scholar
    • Export Citation
  • Anders, A. M., Roe G. H. , Hallet B. , Montgomery D. R. , Finnegan N. J. , and Putkonen J. , 2006: Spatial patterns of precipitation and topography in the Himalaya. Spec. Pap. Geol. Soc. Amer., 398, 3953, doi:10.1130/2006.2398(03).

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., Hsu K.-L. , Sorooshian S. , Braithwaite D. K. , Knapp K. R. , Cecil L. D. , Nelson B. R. , and Prat O. P. , 2014: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, doi:10.1175/BAMS-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • Barros, A., Joshi M. , Putkonen J. , and Burbank D. , 2000: A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett., 27, 36833686, doi:10.1029/2000GL011827.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., and Tanelli S. , 2011: DOMUS: DOppler MUltiple-Scattering Simulator. IEEE Trans. Geosci. Remote Sens., 49, 442450, doi:10.1109/TGRS.2010.2052818.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Tanelli S. , Kobayashi S. , Zrnic D. , Hogan R. J. , and Simmer C. , 2010: Multiple-scattering in radar systems: A review. J. Quant. Spectrosc. Radiat. Transf., 111, 917947, doi:10.1016/j.jqsrt.2009.11.024.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and Chuang C. , 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, doi:10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bony, S., Webb M. , Stevens B. , Bretherton C. , Klein S. , and Tselioudis G. , 2009: The Cloud Feedback Model Intercomparison Project: Summary of activities and recommendations for advancing assessments of cloud–climate feedbacks. CFMIP Doc., 19 pp. [Available online at http://cfmip.metoffice.com/CFMIP2_experiments_March20th2009.pdf.]

  • Brown, B. G., Bullock R. , Gotway J. H. , Ahijevych D. , Davis C. , Gilleland E. , and Holland L. , 2007: Application of the mode object-based verification tool for the evaluation of model precipitation fields. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124856.htm.]

  • Bryan, G. H., and Morrison H. , 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bytheway, J. L., and Kummerow C. D. , 2013: Inferring the uncertainty of satellite precipitation estimates in data-sparse regions over land. J. Geophys. Res. Atmos., 118, 95249533, doi:10.1002/jgrd.50607.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Su Z. , Ma Y. , Yang K. , and Wang B. , 2013: Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 16071618, doi:10.5194/hess-17-1607-2013.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and Suarez M. J. , 1999: A solar radiation parameterization for atmospheric studies. Technical Report Series on Global Modeling and Data Assimilation, Vol. 15, NASA Tech. Memo. TM-1999-104606, 38 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.]

  • Davis, C., Brown B. , and Bullock R. , 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., Brown B. , and Bullock R. , 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, doi:10.1175/MWR3146.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., Hong S.-Y. , and Lim K.-S. , 2008: A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Meteor. Soc. Japan, 86A, 3344, doi:10.2151/jmsj.86A.33.

    • Search Google Scholar
    • Export Citation
  • Flesch, T. K., and Reuter G. W. , 2012: WRF Model simulation of two Alberta flooding events and the impact of topography. J. Hydrometeor., 13, 695708, doi:10.1175/JHM-D-11-035.1.

    • Search Google Scholar
    • Export Citation
  • Fowler, H., and Archer D. , 2006: Conflicting signals of climatic change in the upper Indus basin. J. Climate, 19, 42764293, doi:10.1175/JCLI3860.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., Hamill T. M. , Dole R. M. , and Perlwitz J. , 2012: A multiscale analysis of the extreme weather events over western Russia and northern Pakistan during July 2010. Mon. Wea. Rev., 140, 16391664, doi:10.1175/MWR-D-11-00191.1.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Quart. J. Roy. Meteor. Soc., 133, 711730, doi:10.1002/qj.58.

    • Search Google Scholar
    • Export Citation
  • Haynes, J., Luo Z. , Stephens G. , Marchand R. , and Bodas-Salcedo A. , 2007: A multipurpose radar simulation package: QuickBeam. Bull. Amer. Meteor. Soc., 88, 17231727, doi:10.1175/BAMS-88-11-1723.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., Fernández J. , and Gutiérrez J. , 2015: Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: Assessing the effect of the interpolation methodology. Int. J. Climatol., 36, 900908, doi:10.1002/joc.4391.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., Hsu H.-H. , Lin N.-H. , and Chiu H. , 2011: Roles of European blocking and tropical–extratropical interaction in the 2010 Pakistan flooding. Geophys. Res. Lett., 38, L13806, doi:10.1029/2011GL047583.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Lim J.-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R., Jr., Rasmussen K. , Medina S. , Brodzik S. , and Romatschke U. , 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291298, doi:10.1175/2010BAMS3173.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36, 11911201, doi:10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, S.-H., Im E.-S. , and Han S.-O. , 2012: The effect of topography and sea surface temperature on heavy snowfall in the Yeongdong region: A case study with high resolution WRF simulation. Asia-Pac. J. Atmos. Sci., 48, 259273, doi:10.1007/s13143-012-0026-2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Weiss S. J. , Levit J. J. , Baldwin M. E. , and Bright D. R. , 2006: Examination of convection-allowing configurations of the WRF Model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and Hong S.-Y. , 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Shupe M. D. , and Djalalova I. V. , 2008: Snowfall retrievals using millimeter-wavelength cloud radars. J. Appl. Meteor. Climatol., 47, 769777, doi:10.1175/2007JAMC1768.1.

    • Search Google Scholar
    • Export Citation
  • Maussion, F., Scherer D. , Finkelnburg R. , Richters J. , Yang W. , and Yao T. , 2011: WRF simulation of a precipitation event over the Tibetan Plateau, China—An assessment using remote sensing and ground observations. Hydrol. Earth Syst. Sci., 15, 17951817, doi:10.5194/hess-15-1795-2011.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and Travis L. D. , 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transf., 60, 309324, doi:10.1016/S0022-4073(98)00008-9.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., Morales A. , and Villanueva-Birriel C. , 2015: Concurrent sensitivities of an idealized deep convective storm to parameterization of microphysics, horizontal grid resolution, and environmental static stability. Mon. Wea. Rev., 143, 20822104, doi:10.1175/MWR-D-14-00271.1.

    • Search Google Scholar
    • Export Citation
  • Palazzi, E., von Hardenberg J. , and Provenzale A. , 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, doi:10.1029/2012JD018697.

    • Search Google Scholar
    • Export Citation
  • Parodi, A., and Tanelli S. , 2010: Influence of turbulence parameterizations on high-resolution numerical modeling of tropical convection observed during the TC4 field campaign. J. Geophys. Res., 115, D00J14, doi:10.1029/2009JD013302.

    • Search Google Scholar
    • Export Citation
  • Prakash, S., Mitra A. K. , Rajagopal E. , and Pai D. , 2016: Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. Int. J. Climatol., 36, 16141631, doi:10.1002/joc.4446.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., Hill A. J. , Toma V. E. , Zuluaga M. D. , Webster P. J. , and Houze R. A. , 2015: Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Quart. J. Roy. Meteor. Soc., 141, 12591276, doi:10.1002/qj.2433.

    • Search Google Scholar
    • Export Citation
  • Sardar, S., Ahmad I. , Raza S. S. , and Irfan N. , 2012: Simulation of South Asian physical environment using various cumulus parameterization schemes of MM5. Meteor. Appl., 19, 140151, doi:10.1002/met.266.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., Im E. , Durden S. L. , Facheris L. , and Giuli D. , 2002: The effects of nonuniform beam filling on vertical rainfall velocity measurements with a spaceborne Doppler radar. J. Atmos. Oceanic Technol., 19, 10191034, doi:10.1175/1520-0426(2002)019<1019:TEONBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., Durden S. L. , Im E. , Pak K. S. , Reinke D. G. , Partain P. , Haynes J. M. , and Marchand R. T. , 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., and Coauthors, 2011: NASA’s Integrated Instrument Simulator Suite for Atmospheric Remote Sensing from Spaceborne Platforms (ISSARS) and its role for the ACE and GPM missions. Earth Science Technology Forum, Pasadena, CA, Jet Propulsion Laboratory, 5 pp. [Available online at https://esto.nasa.gov/2012test/conferences/estf2011/papers/Tanelli_ESTF2011.pdf.]

  • Tanelli, S., and Coauthors, 2012: Integrated instrument simulator suites for Earth Science. Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions IV, M. Kawamiya, T. N. Krishnamurti, and S. Maksyutov, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8529), 85290D, doi:10.1117/12.977577.

  • Thompson, G., Field P. R. , Rasmussen R. M. , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Peters-Lidard C. D. , 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Ullah, K., and Shouting G. , 2013: A diagnostic study of convective environment leading to heavy rainfall during the summer monsoon 2010 over Pakistan. Atmos. Res., 120–121, 226239, doi:10.1016/j.atmosres.2012.08.021.

    • Search Google Scholar
    • Export Citation
  • Ushiyama, T., Sayama T. , Tatebe Y. , Fujioka S. , and Fukami K. , 2014: Numerical simulation of 2010 Pakistan flood in the Kabul River basin by using lagged ensemble rainfall forecasting. J. Hydrometeor., 15, 193211, doi:10.1175/JHM-D-13-011.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P., Toma V. , and Kim H.-M. , 2011: Were the 2010 Pakistan floods predictable? Geophys. Res. Lett., 38, L04806, doi:10.1029/2010GL046346.

    • Search Google Scholar
    • Export Citation
  • Winiger, M., Gumpert M. , and Yamout H. , 2005: Karakorum–Hindukush–western Himalaya: Assessing high-altitude water resources. Hydrol. Processes, 19, 23292338, doi:10.1002/hyp.5887.

    • Search Google Scholar
    • Export Citation
  • Yu, C., and Teixeira M. , 2014: Impact of non-hydrostatic effects and trapped lee waves on mountain-wave drag in directionally sheared flow. Quart. J. Roy. Meteor. Soc., 141, 15721585, doi:10.1002/qj.2459.

    • Search Google Scholar
    • Export Citation
  • Yu, X., and Lee T.-Y. , 2010: Role of convective parameterization in simulations of a convection band at grey-zone resolutions. Tellus, 62A, 617632, doi:10.1111/j.1600-0870.2010.00470.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 397 127 15
PDF Downloads 338 61 3