Assessing the Impact of Enhanced Hydrological Processes on Urban Hydrometeorology with Application to Two Cities in Contrasting Climates

Jiachuan Yang School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona

Search for other papers by Jiachuan Yang in
Current site
Google Scholar
PubMed
Close
,
Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona

Search for other papers by Zhi-Hua Wang in
Current site
Google Scholar
PubMed
Close
,
Matei Georgescu School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona

Search for other papers by Matei Georgescu in
Current site
Google Scholar
PubMed
Close
,
Fei Chen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Fei Chen in
Current site
Google Scholar
PubMed
Close
, and
Mukul Tewari National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Mukul Tewari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To enhance the capability of models in better characterizing the urban water cycle, physical parameterizations of urban hydrological processes have been implemented into the single-layer urban canopy model in the widely used Weather Research and Forecasting (WRF) Model. While the new model has been evaluated offline against field measurements at various cities, its performance in online settings via coupling to atmospheric dynamics requires further examination. In this study, the impact of urban hydrological processes on regional hydrometeorology of the fully integrated WRF–urban modeling system for two major cities in the United States, namely, Phoenix and Houston, is assessed. Results show that including hydrological processes improves prediction of the 2-m dewpoint temperature, an indicative measure of coupled thermal and hydrological processes. The implementation of green roof systems as an urban mitigation strategy is then tested at the annual scale. The reduction of environmental temperature and increase of humidity by green roofs indicate strong diurnal and seasonal variations and are significantly affected by geographical and climatic conditions. Comparison with offline studies reveals that land–atmosphere interactions play a crucial role in determining the effect of green roofs.

Corresponding author address: Zhi-Hua Wang, School of Sustainable Engineering and the Built Environment, Arizona State University, 501 E. Tyler Mall, P.O. Box 875306, Tempe, AZ 85287-5306. E-mail: zhwang@asu.edu

Abstract

To enhance the capability of models in better characterizing the urban water cycle, physical parameterizations of urban hydrological processes have been implemented into the single-layer urban canopy model in the widely used Weather Research and Forecasting (WRF) Model. While the new model has been evaluated offline against field measurements at various cities, its performance in online settings via coupling to atmospheric dynamics requires further examination. In this study, the impact of urban hydrological processes on regional hydrometeorology of the fully integrated WRF–urban modeling system for two major cities in the United States, namely, Phoenix and Houston, is assessed. Results show that including hydrological processes improves prediction of the 2-m dewpoint temperature, an indicative measure of coupled thermal and hydrological processes. The implementation of green roof systems as an urban mitigation strategy is then tested at the annual scale. The reduction of environmental temperature and increase of humidity by green roofs indicate strong diurnal and seasonal variations and are significantly affected by geographical and climatic conditions. Comparison with offline studies reveals that land–atmosphere interactions play a crucial role in determining the effect of green roofs.

Corresponding author address: Zhi-Hua Wang, School of Sustainable Engineering and the Built Environment, Arizona State University, 501 E. Tyler Mall, P.O. Box 875306, Tempe, AZ 85287-5306. E-mail: zhwang@asu.edu
Save
  • Alexander, L., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, doi:10.1002/joc.859.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114, 91109, doi:10.1007/s10546-004-4834-5.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., and Entekhabi D. , 1996: Analysis of feedback mechanisms in land–atmosphere interaction. Water Resour. Res., 32, 13431357, doi:10.1029/96WR00005.

    • Search Google Scholar
    • Export Citation
  • Carter, T., and Jackson C. R. , 2007: Vegetated roofs for stormwater management at multiple spatial scales. Landscape Urban Plann., 80, 8494, doi:10.1016/j.landurbplan.2006.06.005.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, doi:10.1002/joc.2158.

    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y., and Steenburgh W. J. , 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta models over the western United States. Wea. Forecasting, 20, 812821, doi:10.1175/WAF885.1.

    • Search Google Scholar
    • Export Citation
  • Dodson, R., and Marks D. , 1997: Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Res., 8, 120, doi:10.3354/cr008001.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, doi:10.1016/S0034-4257(02)00078-0.

    • Search Google Scholar
    • Export Citation
  • Fry, J. A., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sensing, 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., 2015: Challenges associated with adaptation to future urban expansion. J. Climate, 28, 25442563, doi:10.1175/JCLI-D-14-00290.1.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., Moustaoui M. , Mahalov A. , and Dudhia J. , 2011: An alternative explanation of the semiarid urban area “oasis effect.” J. Geophys. Res., 116, D24113, doi:10.1029/2011JD016720.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., Mahalov A. , and Moustaoui M. , 2012: Seasonal hydroclimatic impacts of Sun Corridor expansion. Environ. Res. Lett., 7, 03 4026, doi:10.1088/1748-9326/7/3/034026.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., Morefield P. E. , Bierwagen B. G. , and Weaver C. P. , 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA, 111, 29092914, doi:10.1073/pnas.1322280111.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, doi:10.1175/2010JAMC2354.1.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2011: Initial results from phase 2 of the International Urban Energy Balance Model Comparison. Int. J. Climatol., 31, 244272, doi:10.1002/joc.2227.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krayenhoff, E. S., Christen A. , Martilli A. , and Oke T. R. , 2014: A multi-layer radiation model for urban neighbourhoods with trees. Bound.-Layer Meteor., 151, 139178, doi:10.1007/s10546-013-9883-1.

    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., Oh J. H. , Kulkarni A. , Sabade S. S. , and Chaudhari H. S. , 2007: South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 90, 133159, doi:10.1007/s00704-006-0282-0.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., Kondo H. , Kikegawa Y. , and Kimura F. , 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, doi:10.1023/A:1019207923078.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., Chen F. , Tewari M. , Dudhia J. , Gill D. O. , Duda M. G. , Wang W. , and Miya Y. , 2012: Numerical simulation of urban heat island effect by the WRF Model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model. J. Meteor. Soc. Japan, 90B, 3345, doi:10.2151/jmsj.2012-B03.

    • Search Google Scholar
    • Export Citation
  • Li, D., Bou-Zeid E. , and Oppenheimer M. , 2014: The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett., 9, 05 5002, doi:10.1088/1748-9326/9/5/055002.

    • Search Google Scholar
    • Export Citation
  • Lin, C.-Y., Chen F. , Huang J. C. , Chen W. C. , Liou Y. A. , Chen W. N. , and Liu S.-C. , 2008: Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmos. Environ., 42, 56355649, doi:10.1016/j.atmosenv.2008.03.015.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., Clappier A. , and Rotach M. , 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, doi:10.1023/A:1016099921195.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Tebaldi C. , 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Miao, S., and Chen F. , 2008: Formation of horizontal convective rolls in urban areas. Atmos. Res., 89, 298304, doi:10.1016/j.atmosres.2008.02.013.

    • Search Google Scholar
    • Export Citation
  • Miao, S., and Chen F. , 2014: Enhanced modeling of latent heat flux from urban surfaces in the Noah/single-layer urban canopy coupled model. Sci. China Earth Sci., 57, 24082416, doi:10.1007/s11430-014-4829-0.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Perkins, S., Pitman A. , Holbrook N. , and McAneney J. , 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376, doi:10.1175/JCLI4253.1.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramamurthy, P., Bou-Zeid E. , Smith J. A. , Wang Z. , Baeck M. L. , Saliendra N. Z. , Hom J. L. , and Welty C. , 2014: Influence of subfacet heterogeneity and material properties on the urban surface energy budget. J. Appl. Meteor. Climatol., 53, 21142129, doi:10.1175/JAMC-D-13-0286.1.

    • Search Google Scholar
    • Export Citation
  • Rowe, D. B., 2011: Green roofs as a means of pollution abatement. Environ. Pollut., 159, 21002110, doi:10.1016/j.envpol.2010.10.029.

  • Sailor, D. J., 2008: A green roof model for building energy simulation programs. Energy Build., 40, 14661478, doi:10.1016/j.enbuild.2008.02.001.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., Martilli A. , Tewari M. , and Chen F. , 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, doi:10.1175/2010JAMC2538.1.

    • Search Google Scholar
    • Export Citation
  • Seto, K. C., Fragkias M. , Güneralp B. , and Reilly M. K. , 2011: A meta-analysis of global urban land expansion. PLoS One, 6, e23777, doi:10.1371/journal.pone.0023777.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Klemp J. B. , 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Song, J., and Wang Z.-H. , 2015a: Interfacing the urban land–atmosphere system through coupled urban canopy and atmospheric models. Bound.-Layer Meteor., 154, 427448, doi:10.1007/s10546-014-9980-9.

    • Search Google Scholar
    • Export Citation
  • Song, J., and Wang Z.-H. , 2015b: Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ. Build. Environ., 94, 558568, doi:10.1016/j.buildenv.2015.10.016.

    • Search Google Scholar
    • Export Citation
  • Sun, T., Bou-Zeid E. , Wang Z.-H. , Zerba E. , and Ni G.-H. , 2013: Hydrometeorological determinants of green roof performance via a vertically-resolved model for heat and water transport. Build. Environ., 60, 211224, doi:10.1016/j.buildenv.2012.10.018.

    • Search Google Scholar
    • Export Citation
  • Sunwoo, Y., Chou C. , Takeshita J. , Murakami M. , and Tochihara Y. , 2006a: Physiological and subjective responses to low relative humidity. J. Physiol. Anthropol., 25, 714, doi:10.2114/jpa2.25.7.

    • Search Google Scholar
    • Export Citation
  • Sunwoo, Y., Chou C. , Takeshita J. , Murakami M. , and Tochihara Y. , 2006b: Physiological and subjective responses to low relative humidity in young and elderly men. J. Physiol. Anthropol., 25, 229238, doi:10.2114/jpa2.25.229.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Field P. R. , Rasmussen R. M. , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Unkašević, M., Jovanović O. , and Popović T. , 2001: Urban–suburban/rural vapour pressure and relative humidity differences at fixed hours over the area of Belgrade city. Theor. Appl. Climatol., 68, 6773, doi:10.1007/s007040170054.

    • Search Google Scholar
    • Export Citation
  • Vahmani, P., and Hogue T. S. , 2014: Incorporating an urban irrigation module into the Noah land surface model coupled with an urban canopy model. J. Hydrometeor., 15, 14401456, doi:10.1175/JHM-D-13-0121.1.

    • Search Google Scholar
    • Export Citation
  • VanWoert, N. D., Rowe D. B. , Andresen J. A. , Rugh C. L. , Fernandez R. T. , and Xiao L. , 2005: Green roof stormwater retention. J. Environ. Qual., 34, 10361044, doi:10.2134/jeq2004.0364.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., 2014a: A new perspective of urban–rural differences: The impact of soil water advection. Urban Climate, 10, 1934, doi:10.1016/j.uclim.2014.08.004.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., 2014b: Monte Carlo simulations of radiative heat exchange in a street canyon with trees. Sol. Energy, 110, 704713, doi:10.1016/j.solener.2014.10.012.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., Bou-Zeid E. , Au S. K. , and Smith J. A. , 2011a: Analyzing the sensitivity of WRF’s single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J. Appl. Meteor. Climatol., 50, 17951814, doi:10.1175/2011JAMC2685.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., Bou-Zeid E. , and Smith J. A. , 2011b: A spatially-analytical scheme for surface temperatures and conductive heat fluxes in urban canopy models. Bound.-Layer Meteor., 138, 171193, doi:10.1007/s10546-010-9552-6.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., Bou-Zeid E. , and Smith J. A. , 2013: A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Quart. J. Roy. Meteor. Soc., 139, 16431657, doi:10.1002/qj.2032.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., Zhao X. , Yang J. , and Song J. , 2016: Cooling and energy saving potentials of shade trees and urban lawns in a desert city. Appl. Energy, 161, 437444, doi:10.1016/j.apenergy.2015.10.047.

    • Search Google Scholar
    • Export Citation
  • Yang, J., and Wang Z.-H. , 2014: Physical parameterization and sensitivity of urban hydrological models: Application to green roof systems. Build. Environ., 75, 250263, doi:10.1016/j.buildenv.2014.02.006.

    • Search Google Scholar
    • Export Citation
  • Yang, J., and Wang Z.-H. , 2015: Optimizing urban irrigation schemes for the trade-off between energy and water consumption. Energy Build., 107, 335344, doi:10.1016/j.enbuild.2015.08.045.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Yu Q. , and Gong P. , 2008: Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ., 42, 72667273, doi:10.1016/j.atmosenv.2008.07.003.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Wang Z.-H. , Chen F. , Miao S. , Tewari M. , Voogt J. , and Myint S. , 2015a: Enhancing hydrologic modelling in the coupled Weather Research and Forecasting–urban modelling system. Bound.-Layer Meteor., 155, 87109, doi:10.1007/s10546-014-9991-6.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Wang Z.-H. , and Kaloush K. E. , 2015b: Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island? Renew. Sustain. Energy Rev., 47, 830843, doi:10.1016/j.rser.2015.03.092.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4509 697 78
PDF Downloads 596 99 4