Abstract
To enhance the capability of models in better characterizing the urban water cycle, physical parameterizations of urban hydrological processes have been implemented into the single-layer urban canopy model in the widely used Weather Research and Forecasting (WRF) Model. While the new model has been evaluated offline against field measurements at various cities, its performance in online settings via coupling to atmospheric dynamics requires further examination. In this study, the impact of urban hydrological processes on regional hydrometeorology of the fully integrated WRF–urban modeling system for two major cities in the United States, namely, Phoenix and Houston, is assessed. Results show that including hydrological processes improves prediction of the 2-m dewpoint temperature, an indicative measure of coupled thermal and hydrological processes. The implementation of green roof systems as an urban mitigation strategy is then tested at the annual scale. The reduction of environmental temperature and increase of humidity by green roofs indicate strong diurnal and seasonal variations and are significantly affected by geographical and climatic conditions. Comparison with offline studies reveals that land–atmosphere interactions play a crucial role in determining the effect of green roofs.