A Shallow Cumuliform Snowfall Census Using Spaceborne Radar

Mark S. Kulie Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Mark S. Kulie in
Current site
Google Scholar
PubMed
Close
,
Lisa Milani Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Lisa Milani in
Current site
Google Scholar
PubMed
Close
,
Norman B. Wood Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Norman B. Wood in
Current site
Google Scholar
PubMed
Close
,
Samantha A. Tushaus Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Samantha A. Tushaus in
Current site
Google Scholar
PubMed
Close
,
Ralf Bennartz Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Ralf Bennartz in
Current site
Google Scholar
PubMed
Close
, and
Tristan S. L’Ecuyer Space Science and Engineering Center, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Tristan S. L’Ecuyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The first observationally based near-global shallow cumuliform snowfall census is undertaken using multiyear CloudSat Cloud Profiling Radar observations. CloudSat snowfall observations and snowfall rate estimates from the CloudSat 2C-Snow Water Content and Snowfall Rate (2C-SNOW-PROFILE) product are partitioned between shallow cumuliform and nimbostratus cloud structures by utilizing coincident cloud category classifications from the CloudSat 2B-Cloud Scenario Classification (2B-CLDCLASS) product. Shallow cumuliform (nimbostratus) snowfall events comprise about 36% (59%) of snowfall events in the CloudSat snowfall dataset. The remaining 5% of snowfall events are distributed between other categories. Distinct oceanic versus continental trends exist between the two major snowfall categories, as shallow cumuliform snow-producing clouds occur predominantly over the oceans. Regional differences are also noted in the partitioned dataset, with over-ocean regions near Greenland, the far North Atlantic Ocean, the Barents Sea, the western Pacific Ocean, the southern Bering Sea, and the Southern Hemispheric pan-oceanic region containing distinct shallow snowfall occurrence maxima exceeding 60%. Certain Northern Hemispheric continental regions also experience frequent shallow cumuliform snowfall events (e.g., inland Russia), as well as some mountainous regions. CloudSat-generated snowfall rates are also partitioned between the two major snowfall categories to illustrate the importance of shallow snow-producing cloud structures to the average annual snowfall. While shallow cumuliform snowfall produces over 50% of the annual estimated surface snowfall flux regionally, about 18% (82%) of global snowfall is attributed to shallow (nimbostratus) snowfall. This foundational spaceborne snowfall study will be utilized for follow-on evaluative studies with independent model, reanalysis, and ground-based observational datasets to characterize respective dataset biases and to better quantify CloudSat snowfall detection and quantitative snowfall estimate uncertainties.

Corresponding author address: Mark S. Kulie, Space Science and Engineering Center, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: mskulie@wisc.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

The first observationally based near-global shallow cumuliform snowfall census is undertaken using multiyear CloudSat Cloud Profiling Radar observations. CloudSat snowfall observations and snowfall rate estimates from the CloudSat 2C-Snow Water Content and Snowfall Rate (2C-SNOW-PROFILE) product are partitioned between shallow cumuliform and nimbostratus cloud structures by utilizing coincident cloud category classifications from the CloudSat 2B-Cloud Scenario Classification (2B-CLDCLASS) product. Shallow cumuliform (nimbostratus) snowfall events comprise about 36% (59%) of snowfall events in the CloudSat snowfall dataset. The remaining 5% of snowfall events are distributed between other categories. Distinct oceanic versus continental trends exist between the two major snowfall categories, as shallow cumuliform snow-producing clouds occur predominantly over the oceans. Regional differences are also noted in the partitioned dataset, with over-ocean regions near Greenland, the far North Atlantic Ocean, the Barents Sea, the western Pacific Ocean, the southern Bering Sea, and the Southern Hemispheric pan-oceanic region containing distinct shallow snowfall occurrence maxima exceeding 60%. Certain Northern Hemispheric continental regions also experience frequent shallow cumuliform snowfall events (e.g., inland Russia), as well as some mountainous regions. CloudSat-generated snowfall rates are also partitioned between the two major snowfall categories to illustrate the importance of shallow snow-producing cloud structures to the average annual snowfall. While shallow cumuliform snowfall produces over 50% of the annual estimated surface snowfall flux regionally, about 18% (82%) of global snowfall is attributed to shallow (nimbostratus) snowfall. This foundational spaceborne snowfall study will be utilized for follow-on evaluative studies with independent model, reanalysis, and ground-based observational datasets to characterize respective dataset biases and to better quantify CloudSat snowfall detection and quantitative snowfall estimate uncertainties.

Corresponding author address: Mark S. Kulie, Space Science and Engineering Center, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: mskulie@wisc.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save
  • Andersson, T., and Nilsson S. , 1990: Topographically induced convective snowbands over the Baltic Sea and their precipitation distribution. Wea. Forecasting, 5, 299312, doi:10.1175/1520-0434(1990)005<0299:TICSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bech, J., Pineda N. , Rigo T. , and Aran M. , 2013: Remote sensing analysis of a Mediterranean thundersnow and low-altitude heavy snowfall event. Atmos. Res., 123, 305322, doi:10.1016/j.atmosres.2012.06.021.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Stephens G. , Adler R. F. , Huffman G. J. , Lambrigtsen B. , and Lebsock M. , 2014: An update on the oceanic precipitation rate and its zonal distribution in light of advanced observations from space. J. Climate, 27, 39573965, doi:10.1175/JCLI-D-13-00679.1.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and Selten F. M. , 2014: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479482, doi:10.1038/nature13259.

    • Search Google Scholar
    • Export Citation
  • Boening, C., Lebsock M. , Landerer F. , and Stephens G. , 2012: Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett., 39, L21501, doi:10.1029/2012GL053316.

    • Search Google Scholar
    • Export Citation
  • Burnett, A. W., Kirby M. E. , Mullins H. T. , and Patterson W. P. , 2003: Increasing Great Lake–effect snowfall during the twentieth century: A regional response to global warming? J. Climate, 16, 35353542, doi:10.1175/1520-0442(2003)016<3535:IGLSDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Castellani, B. B., Shupe M. D. , Hudak D. R. , and Sheppard B. E. , 2015: The annual cycle of snowfall at Summit, Greenland. J. Geophys. Res. Atmos., 120, 66546668, doi:10.1002/2015JD023072.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1979: How a severe winter impacts on individuals. Bull. Amer. Meteor. Soc., 60, 110114, doi:10.1175/1520-0477(1979)060<0110:HASWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ellis, T. D., L’Ecuyer T. , Haynes J. M. , and Stephens G. L. , 2009: How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett., 36, L03815, doi:10.1029/2008GL036728.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Yang Y. , Rasmussen R. , Haimov S. , and Pokharel B. , 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, doi:10.1175/MWR-D-14-00199.1.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., McConnell J. , Das S. , Cappelen J. , and Stephens A. , 2006: Observed and modeled Greenland ice sheet snow accumulation, 1958–2003, and links with regional climate forcing. J. Climate, 19, 344358, doi:10.1175/JCLI3615.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., L’Ecuyer T. S. , Stephens G. L. , Miller S. D. , Mitrescu C. , Wood N. B. , and Tanelli S. , 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., L’Ecuyer T. S. , Vane D. , Stephens G. L. , and Reinke D. , 2013: Level 2-C precipitation column algorithm product process description and interface control document. Version P2_R04, CloudSat Project Doc., 17 pp. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-PRECIP-COLUMN_PDICD.P2_R04.20130124.pdf.]

  • Henne, P. D., Hu F. S. , and Cleland D. T. , 2007: Lake-effect snow as the dominant control of mesic-forest distribution in Michigan, USA. J. Ecol., 95, 517529, doi:10.1111/j.1365-2745.2007.01220.x.

    • Search Google Scholar
    • Export Citation
  • Hiley, M. J., Kulie M. S. , and Bennartz R. , 2011: Uncertainty analysis for CloudSat snowfall retrievals. J. Appl. Meteor. Climatol., 50, 399418, doi:10.1175/2010JAMC2505.1.

    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., III, 1971: Lake-effect cloud bands as seen from weather satellites. J. Atmos. Sci., 28, 11651170, doi:10.1175/1520-0469(1971)028<1165:LECBAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., Rodriguez P. , and Donaldson N. , 2008: Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network. J. Geophys. Res., 113, D00A07, doi:10.1029/2008JD009992.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Gu G. , 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., Uyeda H. , Iwanami K. , and Liu G. , 2000: The response of 36- and 89-GHz microwave channels to convective snow clouds over ocean: Observation and modeling. J. Appl. Meteor., 39, 23222335, doi:10.1175/1520-0450(2000)039<2322:TROAGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Steve R. , 1995: A satellite study of cloud-band frequencies over the Great Lakes. J. Appl. Meteor., 34, 20832090, doi:10.1175/1520-0450(1995)034<2083:ASSOCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Laird N. F. , 1998: Observations of widespread lake-effect cloudiness: Influences of lake surface temperature and upwind conditions. Wea. Forecasting, 13, 811821, doi:10.1175/1520-0434(1998)013<0811:OOWLEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., Maahn M. , Peters G. , and Simmer C. , 2011: Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar). Meteor. Atmos. Phys., 113, 7587, doi:10.1007/s00703-011-0142-z.

    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., and Uccellini L. W. , 1990: Snowstorms along the Northeastern Coast of the United States: 1955–1985. Meteor. Monogr., No 44, Amer. Meteor. Soc., 280 pp.

  • Kolka, R. K., Giardina C. P. , McClure J. D. , Mayer A. , and Jurgensen M. F. , 2010: Partitioning hydrologic contributions to an ‘old-growth’ riparian area in the Huron Mountains of Michigan, USA. Ecohydrology, 3, 315324, doi:10.1002/eco.112.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and Bennartz R. , 2009: Utilizing spaceborne radars to retrieve dry snowfall. J. Appl. Meteor. Climatol., 48, 25642580, doi:10.1175/2009JAMC2193.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., Bennartz R. , Greenwald T. J. , Chen Y. , and Weng F. Z. , 2010: Uncertainties in microwave properties of frozen precipitation implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, doi:10.1175/2010JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Randel D. L. , Kulie M. S. , Wang N.-Y. , Ferraro R. , Munchak S. J. , and Petkovic V. , 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, doi:10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Westcott N. E. , and Kristovich D. A. R. , 2002: Assessment of potential effects of climate change on heavy lake effect snowstorms near Lake Erie. J. Great Lakes Res., 28, 521536, doi:10.1016/S0380-1330(02)70603-5.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Ensor L. , Palecki M. , Easterling D. , Robinson D. , Hubbard K. G. , and Redmond K. , 2009: A new look at lake-effect snowfall trends in the Laurentian Great Lakes using a temporally homogeneous data set. J. Great Lakes Res., 35, 2329, doi:10.1016/j.jglr.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., Sobash R. , and Hodas N. , 2010: Climatological conditions of lake-effect precipitation events associated with the New York State Finger Lakes. J. Appl. Meteor. Climatol, 49, 10521062, doi:10.1175/2010JAMC2312.1.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and L’Ecuyer T. S. , 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., L’Ecuyer T. S. , and Stephens G. L. , 2011: Detecting the ratio of rain and cloud water in low-latitude shallow marine clouds. J. Appl. Meteor. Climatol., 50, 419432, doi:10.1175/2010JAMC2494.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Zipser E. J. , 2009: “Warm rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22, 767779, doi:10.1175/2008JCLI2641.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, doi:10.1029/2007JD009766.

  • Liu, G., and Seo E.-K. , 2013: Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach. J. Geophys. Res. Atmos., 118, 13761387, doi:10.1002/jgrd.50172.

    • Search Google Scholar
    • Export Citation
  • Maahn, M., Burgard C. , Crewell S. , Gorodetskaya I. V. , Kneifel S. , Lhermitte S. , Van Tricht K. , and van Lipzig N. P. M. , 2014: How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? J. Geophys. Res. Atmos., 119, 13 260413 2620, doi:10.1002/2014JD022079.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., Mace G. G. , Ackerman T. , and Stephens G. , 2008: Hydrometeor detection using Cloudsat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Mazon, J., Niemelä S. , Pino D. , Savijärvi H. , and Vihma T. , 2015: Snow bands over the Gulf of Finland in wintertime. Tellus, 67A, 25102, doi:10.3402/tellusa.v67.25102.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Shupe M. D. , and Djalalova I. V. , 2008: Snowfall retrievals using millimeter-wavelength cloud radars. J. Appl. Meteor. Climatol, 47, 769777, doi:10.1175/2007JAMC1768.1.

    • Search Google Scholar
    • Export Citation
  • Milani, L., Porcù F. , Casella D. , Dietrich S. , Panegrossi G. , Petracca M. , and Sanò P. , 2015: Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar. Cryosphere Discuss., 9, 141182, doi:10.5194/tcd-9-141-2015.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., 1987: Operational forecasting of lake effect snowfall in western and central New York. Wea. Forecasting, 2, 310321, doi:10.1175/1520-0434(1987)002<0310:OFOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., Liu G. , Seo E.-K. , Wang J. R. , and Aonashi K. , 2006: Development of a snowfall retrieval algorithm at high microwave frequencies. J. Geophys. Res., 111, D22216, doi:10.1029/2005JD006826.

    • Search Google Scholar
    • Export Citation
  • Norris, J., Vaughan G. , and Schultz D. M. , 2013: Snowbands over the English Channel and Irish Sea during cold-air outbreaks. Quart. J. Roy. Meteor. Soc., 139, 17471761, doi:10.1002/qj.2079.

    • Search Google Scholar
    • Export Citation
  • Norton, D. C., and Bolsenga S. J. , 1993: Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 19431955, doi:10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Holman K. , Zarrin A. , Fluck E. , Vavrus S. , and Bennington V. , 2013: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, doi:10.1175/JCLI-D-12-00140.1.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Lorenz D. , Hoving C. , and Schummer M. , 2014: Twenty-first-century projections of snowfall and winter severity across central-eastern North America. J. Climate, 27, 65266550, doi:10.1175/JCLI-D-13-00520.1.

    • Search Google Scholar
    • Export Citation
  • Palerme, C., Kay J. E. , Genthon C. , L’Ecuyer T. , Wood N. B. , and Claud C. , 2014: How much snow falls on the Antarctic ice sheet? Cryosphere, 8, 15771587, doi:10.5194/tc-8-1577-2014.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., McFarquhar G. M. , Rauber R. M. , Jewett B. F. , and Leon D. C. , 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, doi:10.1175/JAS-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., Geerts B. , Jing X. , Friedrich K. , Aikins J. , Breed D. , Rasmussen R. , and Huggins A. , 2014: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A multi-sensor case study of shallow precipitating orographic cumuli. Atmos. Res., 147–148, 162182, doi:10.1016/j.atmosres.2014.05.014.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2014: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, doi:10.1175/JAS-D-13-0253.1.

    • Search Google Scholar
    • Export Citation
  • Rapp, A. D., Lebsock M. , and L’Ecuyer T. , 2013: Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat. Environ. Res. Lett., 8, 014027, doi:10.1088/1748-9326/8/1/014027.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Wang Z. , 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, doi:10.1029/2007GL032591.

    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., 1993: Impacts on severe winter weather during December 1989 in the Lake Erie snowbelt. J. Climate, 6, 759767, doi:10.1175/1520-0442(1993)006<0759:IOSWWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., Edgell D. J. , and Delaney M. A. , 1992: Design ground snow loads for Ohio. J. Appl. Meteor., 31, 622627, doi:10.1175/1520-0450(1992)031<0622:DGSLFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 1999: Lake-effect snowstorms in northern Utah and western New York with and without lightning. Wea. Forecasting, 14, 10231031, doi:10.1175/1520-0434(1999)014<1023:LESINU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and Houze R. A. , 2003: The TRMM Precipitation Radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524, doi:10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scott, R. W., and Huff F. A. , 1996: Impacts of the Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845863, doi:10.1016/S0380-1330(96)71006-7.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, doi:10.1126/science.1228102.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and Nakamura K. , 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13, 41074124, doi:10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., Matrosov S. Y. , and Uttal T. , 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, doi:10.1175/JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2013: High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bull. Amer. Meteor. Soc., 94, 169186, doi:10.1175/BAMS-D-11-00249.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., Adler R. F. , and North G. R. , 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, doi:10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., Halvorson S. F. , and Onton D. J. , 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea Rev., 128, 709727, doi:10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., Durden S. L. , Im E. , Pak K. S. , Reinke D. G. , Partain P. , Haynes J. M. , and Marchand R. T. , 2008: CloudSat’s Cloud Profiling Radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • Thomas, B. C., and Martin J. E. , 2007: A synoptic climatology and composite analysis of the Alberta Clipper. Wea. Forecasting, 22, 315333, doi:10.1175/WAF982.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Liu G. , Seo E.-K. , and Fu Y. , 2013: Liquid water in snowing clouds: Implications for satellite remote sensing of snowfall. Atmos. Res., 131, 6072, doi:10.1016/j.atmosres.2012.06.008.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Sassen K. , 2007: Level 2 cloud scenario classification product process description and interface control document. Version 5.0, CloudSat Project Doc., 50 pp. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CLDCLASS_PDICD.P_R04.20070724.pdf.]

  • Wood, N. B., L’Ecuyer T. S. , Vane D. , Stephens G. L. , and Partain P. , 2013: Level 2C snow profile process description and interface control document. JPL Doc., 21 pp.

  • Wood, N. B., L’Ecuyer T. S. , Heymsfield A. J. , Stephens G. L. , Hudak D. R. , and Rodriguez P. , 2014: Estimating snow microphysical properties using collocated multisensor observations. J. Geophys. Res. Atmos., 119, 89418961, doi:10.1002/2013JD021303.

    • Search Google Scholar
    • Export Citation
  • Wood, N. B., L’Ecuyer T. S. , Heymsfield A. J. , and Stephens G. L. , 2015: Microphysical constraints on millimeter-wavelength scattering properties of snow particles. J. Appl. Meteor. Climatol., 54, 909931, doi:10.1175/JAMC-D-14-0137.1.

    • Search Google Scholar
    • Export Citation
  • Yeager, K. N., Steenburgh W. J. , and Alcott T. I. , 2013: Contributions of lake-effect periods to the cool-season hydroclimate of the Great Salt Lake basin. J. Appl. Meteor. Climatol., 52, 341362, doi:10.1175/JAMC-D-12-077.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1134 393 21
PDF Downloads 687 101 10