Probabilistic Inference Coupled with Possibilistic Reasoning for Robust Estimation of Hydrologic Parameters and Piecewise Characterization of Interactive Uncertainties

S. Wang Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, Canada

Search for other papers by S. Wang in
Current site
Google Scholar
PubMed
Close
,
G. H. Huang Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada

Search for other papers by G. H. Huang in
Current site
Google Scholar
PubMed
Close
,
B. W. Baetz Department of Civil Engineering, McMaster University, Hamilton, Ontario, Canada

Search for other papers by B. W. Baetz in
Current site
Google Scholar
PubMed
Close
, and
W. Huang Department of Civil Engineering, McMaster University, Hamilton, Ontario, Canada

Search for other papers by W. Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper presents a factorial possibilistic–probabilistic inference (FPI) framework for estimation of hydrologic parameters and characterization of interactive uncertainties. FPI is capable of incorporating expert knowledge into the parameter adjustment procedure for enhancing the understanding of the nature of the calibration problem. As a component of the FPI framework, a Monte Carlo–based fractional fuzzy–factorial analysis (MFA) method is also proposed to identify the best parameter set and its underlying probability distributions in a fuzzy probability space. Factorial analysis of variance (ANOVA) coupled with its multivariate extensions are performed to explore potential interactions among model parameters and among hydrological metrics in a systematic manner. The proposed methodology is applied to the Xiangxi River watershed by using the conceptual hydrological model (HYMOD) to demonstrate its validity and applicability. Results reveal that MFA is capable of deriving probability density functions (PDFs) of hydrologic model parameters. Moreover, the sequential inferences derived from the F test and its multivariate approximations disclose the statistical significance of parametric interactions affecting individual and multiple hydrological metrics, respectively. The findings presented here indicate that parametric interactions are complex in a fuzzy stochastic environment, and the magnitude and direction of interaction effects vary in different regions of the parameter space as well as vary temporally because of the dynamic behavior of hydrologic systems.

Corresponding author address: G. H. Huang, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Pkwy., Regina, SK S4S 0A2, Canada. E-mail: sshuo.wwang@gmail.com; huangg@uregina.ca

Abstract

This paper presents a factorial possibilistic–probabilistic inference (FPI) framework for estimation of hydrologic parameters and characterization of interactive uncertainties. FPI is capable of incorporating expert knowledge into the parameter adjustment procedure for enhancing the understanding of the nature of the calibration problem. As a component of the FPI framework, a Monte Carlo–based fractional fuzzy–factorial analysis (MFA) method is also proposed to identify the best parameter set and its underlying probability distributions in a fuzzy probability space. Factorial analysis of variance (ANOVA) coupled with its multivariate extensions are performed to explore potential interactions among model parameters and among hydrological metrics in a systematic manner. The proposed methodology is applied to the Xiangxi River watershed by using the conceptual hydrological model (HYMOD) to demonstrate its validity and applicability. Results reveal that MFA is capable of deriving probability density functions (PDFs) of hydrologic model parameters. Moreover, the sequential inferences derived from the F test and its multivariate approximations disclose the statistical significance of parametric interactions affecting individual and multiple hydrological metrics, respectively. The findings presented here indicate that parametric interactions are complex in a fuzzy stochastic environment, and the magnitude and direction of interaction effects vary in different regions of the parameter space as well as vary temporally because of the dynamic behavior of hydrologic systems.

Corresponding author address: G. H. Huang, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Pkwy., Regina, SK S4S 0A2, Canada. E-mail: sshuo.wwang@gmail.com; huangg@uregina.ca
Save
  • Alvisi, S., and Franchini M. , 2011: Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ. Modell. Software, 26, 523537, doi:10.1016/j.envsoft.2010.10.016.

    • Search Google Scholar
    • Export Citation
  • Asadzadeh, M., Tolson B. A. , and Burn D. H. , 2014: A new selection metric for multiobjective hydrologic model calibration. Water Resour. Res., 50, 70827099, doi:10.1002/2013WR014970.

    • Search Google Scholar
    • Export Citation
  • Assumaning, G. A., and Chang S. Y. , 2014: State and parameter estimation in three-dimensional subsurface contaminant transport modeling using Kalman filter coupled with Monte Carlo sampling. J. Environ. Inf., 24, 8089, doi:10.3808/jei.201400280.

    • Search Google Scholar
    • Export Citation
  • Bulygina, N., and Gupta H. , 2011: Correcting the mathematical structure of a hydrological model via Bayesian data assimilation. Water Resour. Res., 47, W05514, doi:10.1029/2010WR009614.

    • Search Google Scholar
    • Export Citation
  • Chang, S. Y., and Sayemuzzaman M. , 2014: Using unscented Kalman filter in subsurface contaminant transport models. J. Environ. Inf., 23, 1422, doi:10.3808/jei.201400253.

    • Search Google Scholar
    • Export Citation
  • Fenicia, F., Savenije H. H. G. , Matgen P. , and Pfister L. , 2007: A comparison of alternative multiobjective calibration strategies for hydrological modeling. Water Resour. Res., 43, W03434, doi:10.1029/2006WR005098.

    • Search Google Scholar
    • Export Citation
  • Ferrero, A., Prioli M. , and Salicone S. , 2013: Processing dependent systematic contributions to measurement uncertainty. IEEE Trans. Instrum. Meas., 62, 720731, doi:10.1109/TIM.2013.2240097.

    • Search Google Scholar
    • Export Citation
  • Feyen, L., Kalas M. , and Vrugt J. A. , 2008: Semi-distributed parameter optimization and uncertainty assessment for large-scale streamflow simulation using global optimization. Hydrol. Sci. J., 53, 293308, doi:10.1623/hysj.53.2.293.

    • Search Google Scholar
    • Export Citation
  • Fu, G., and Kapelan Z. , 2011: Fuzzy probabilistic design of water distribution networks. Water Resour. Res., 47, W05538, doi:10.1029/2010WR009739.

    • Search Google Scholar
    • Export Citation
  • Gill, M. K., Kaheil Y. H. , Khalil A. , McKee M. , and Bastidas L. , 2006: Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour. Res., 42, W07417, doi:10.1029/2005WR004528.

    • Search Google Scholar
    • Export Citation
  • Guyonnet, D., Bourgine B. , Dubois D. , Fargier H. , Côme B. , and Chilès J. , 2003: Hybrid approach for addressing uncertainty in risk assessments. J. Environ. Eng., 129, 6878, doi:10.1061/(ASCE)0733-9372(2003)129:1(68).

    • Search Google Scholar
    • Export Citation
  • Han, J., Huang G. , Zhang H. , Li Z. , and Li Y. , 2014: Heterogeneous precipitation and streamflow trends in the Xiangxi River watershed, 1961–2010. J. Hydrol. Eng., 19, 12471258, doi:10.1061/(ASCE)HE.1943-5584.0000898.

    • Search Google Scholar
    • Export Citation
  • He, L., Huang G. , Lu H. , Wang S. , and Xu Y. , 2012: Quasi-Monte Carlo based global uncertainty and sensitivity analysis in modeling free product migration and recovery from petroleum-contaminated aquifers. J. Hazard. Mater., 219–220, 133140, doi:10.1016/j.jhazmat.2012.03.067.

    • Search Google Scholar
    • Export Citation
  • Huey-Kuo, C., Wen-Ko H. , and Wei-Ling C. , 1998: A comparison of vertex method with JHE method. Fuzzy Sets Syst., 95, 201214, doi:10.1016/S0165-0114(96)00307-7.

    • Search Google Scholar
    • Export Citation
  • Jacquin, A. P., 2010: Possibilistic uncertainty analysis of a conceptual model of snowmelt runoff. Hydrol. Earth Syst. Sci., 14, 16811695, doi:10.5194/hess-14-1681-2010.

    • Search Google Scholar
    • Export Citation
  • Juston, J., Seibert J. , and Johansson P. O. , 2009: Temporal sampling strategies and uncertainty in calibrating a conceptual hydrological model for a small boreal catchment. Hydrol. Processes, 23, 30933109, doi:10.1002/hyp.7421.

    • Search Google Scholar
    • Export Citation
  • Khan, U. T., and Valeo C. , 2015: A new fuzzy linear regression approach for dissolved oxygen prediction. Hydrol. Sci. J., 60, 10961119, doi:10.1080/02626667.2014.900558.

    • Search Google Scholar
    • Export Citation
  • Khan, U. T., Valeo C. , and He J. , 2013: Non-linear fuzzy-set based uncertainty propagation for improved DO prediction using multiple-linear regression. Stochastic Environ. Res. Risk Assess., 27, 599616, doi:10.1007/s00477-012-0626-5.

    • Search Google Scholar
    • Export Citation
  • Kollat, J. B., Reed P. M. , and Wagener T. , 2012: When are multiobjective calibration trade-offs in hydrologic models meaningful? Water Resour. Res., 48, W03520, doi:10.1029/2011WR011534.

    • Search Google Scholar
    • Export Citation
  • Kuczera, G., and Parent E. , 1998: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. J. Hydrol., 211, 6985, doi:10.1016/S0022-1694(98)00198-X.

    • Search Google Scholar
    • Export Citation
  • Kwakernaak, H., 1978: Fuzzy random variables—I. Definitions and theorems. Inf. Sci., 15, 129, doi:10.1016/0020-0255(78)90019-1.

  • Langley, R. S., 2000: Unified approach to probabilistic and possibilistic analysis of uncertain systems. J. Eng. Mech., 126, 11631172, doi:10.1061/(ASCE)0733-9399(2000)126:11(1163).

    • Search Google Scholar
    • Export Citation
  • Li, Z., Huang G. H. , Fan Y. R. , and Xu J. L. , 2015: Hydrologic risk analysis for nonstationary streamflow records under uncertainty. J. Environ. Inform., 26, 4151, doi:10.3808/jei.201500321.

    • Search Google Scholar
    • Export Citation
  • Ma, Z. Z., Wang Z. J. , Xia T. , Gippel C. J. , and Speed R. , 2014: Hydrograph-based hydrologic alteration assessment and its application to the Yellow River. J. Environ. Inform., 23, 113, doi:10.3808/jei.201400252.

    • Search Google Scholar
    • Export Citation
  • Montanari, A., 2007: What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol. Processes, 21, 841845, doi:10.1002/hyp.6623.

    • Search Google Scholar
    • Export Citation
  • Montgomery, D. C., 2000: Design and Analysis of Experiments. 5th ed. John Wiley & Sons, 752 pp.

  • Montgomery, D. C., and Runger G. C. , 2013: Applied Statistics and Probability for Engineers. 6th ed. John Wiley & Sons, 832 pp.

  • Moore, R. J., 2007: The PDM rainfall–runoff model. Hydrol. Earth Syst. Sci., 11, 483499, doi:10.5194/hess-11-483-2007.

  • Moradkhani, H., Hsu K.-L. , Gupta H. , and Sorooshian S. , 2005: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604.

    • Search Google Scholar
    • Export Citation
  • Moussu, F., Oudin L. , Plagnes V. , Mangin A. , and Bendjoudi H. , 2011: A multi-objective calibration framework for rainfall–discharge models applied to karst systems. J. Hydrol., 400, 364376, doi:10.1016/j.jhydrol.2011.01.047.

    • Search Google Scholar
    • Export Citation
  • Muleta, M. K., and Nicklow J. W. , 2005: Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J. Hydrol., 306, 127145, doi:10.1016/j.jhydrol.2004.09.005.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Pianosi, F., and Raso L. , 2012: Dynamic modeling of predictive uncertainty by regression on absolute errors. Water Resour. Res., 48, W03516, doi:10.1029/2011WR010603.

    • Search Google Scholar
    • Export Citation
  • Rahmani, M. A., and Zarghami M. , 2015: The use of statistical weather generator, hybrid data driven and system dynamics models for water resources management under climate change. J. Environ. Inform., 25, 2335, doi:10.3808/jei.201400285.

    • Search Google Scholar
    • Export Citation
  • Rao, C. R., 1952: Advanced Statistical Methods in Biometric Research. John Wiley, 390 pp.

  • Razavi, S., and Tolson B. A. , 2013: An efficient framework for hydrologic model calibration on long data periods. Water Resour. Res., 49, 84188431, doi:10.1002/2012WR013442.

    • Search Google Scholar
    • Export Citation
  • Sadegh, M., and Vrugt J. A. , 2014: Approximate Bayesian Computation using Markov Chain Monte Carlo simulation: DREAM(ABC). Water Resour. Res., 50, 67676787, doi:10.1002/2014WR015386.

    • Search Google Scholar
    • Export Citation
  • Schoups, G., and Vrugt J. A. , 2010: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resour. Res., 46, W10531, doi:10.1029/2009WR008933.

    • Search Google Scholar
    • Export Citation
  • Seibert, J., and McDonnell J. J. , 2002: On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resour. Res., 38, 1241, doi:10.1029/2001WR000978.

    • Search Google Scholar
    • Export Citation
  • Seibert, J., and McDonnell J. J. , 2014: Gauging the ungauged basin: The relative value of soft and hard data. J. Hydrol. Eng., 20, A4014004, doi:10.1061/(ASCE)HE.1943-5584.0000861.

    • Search Google Scholar
    • Export Citation
  • Shafer, G., 1976: A Mathematical Theory of Evidence. Princeton University Press, 314 pp.

  • Singh, S. K., and Bárdossy A. , 2012: Calibration of hydrological models on hydrologically unusual events. Adv. Water Resour., 38, 8191, doi:10.1016/j.advwatres.2011.12.006.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., and Arfi F. , 1982: Response surface parameter sensitivity analysis methods for postcalibration studies. Water Resour. Res., 18, 15311538, doi:10.1029/WR018i005p01531.

    • Search Google Scholar
    • Export Citation
  • Tabachnick, B. G., and Fidell L. S. , 2006: Using Multivariate Statistics. 5th ed. Pearson Education, 1008 pp.

  • Vrugt, J. A., ter Braak C. J. F. , Clark M. P. , Hyman J. M. , and Robinson B. A. , 2008: Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and Huang G. H. , 2015: A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management. Eur. J. Oper. Res., 240, 572581, doi:10.1016/j.ejor.2014.07.011.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Huang G. H. , and He L. , 2012: Development of a clusterwise-linear-regression-based forecasting system for characterizing DNAPL dissolution behaviors in porous media. Sci. Total Environ., 433, 141150, doi:10.1016/j.scitotenv.2012.06.045.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Huang G. H. , and Baetz B. W. , 2015a: An inexact probabilistic–possibilistic optimization framework for flood management in a hybrid uncertain environment. IEEE Trans. Fuzzy Syst., 23, 897908, doi:10.1109/TFUZZ.2014.2333094.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Huang G. H. , Baetz B. W. , and Huang W. , 2015b: A polynomial chaos ensemble hydrologic prediction system for efficient parameter inference and robust uncertainty assessment. J. Hydrol., 530, 716733, doi:10.1016/j.jhydrol.2015.10.021.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Huang G. H. , Huang W. , Fan Y. R. , and Li Z. , 2015c: A fractional factorial probabilistic collocation method for uncertainty propagation of hydrologic model parameters in a reduced dimensional space. J. Hydrol., 529, 11291146, doi:10.1016/j.jhydrol.2015.09.034.

    • Search Google Scholar
    • Export Citation
  • Wei, J., Huang G. H. , Wang S. , Zhao S. , and Yao Y. , 2013: Improved solubilities of PAHs by multi-component Gemini surfactant systems with different spacer lengths. Colloids Surf., 423A, 5057, doi:10.1016/j.colsurfa.2013.01.049.

    • Search Google Scholar
    • Export Citation
  • Wu, C. F. J., and Hamada M. S. , 2009: Experiments: Planning, Analysis, and Optimization. 2nd ed. John Wiley & Sons, 760 pp.

  • Xu, H., Taylor R. G. , and Xu Y. , 2011: Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River basins, China. Hydrol. Earth Syst. Sci., 15, 333344, doi:10.5194/hess-15-333-2011.

    • Search Google Scholar
    • Export Citation
  • Young, P. C., 2013: Hypothetico-inductive data-based mechanistic modeling of hydrological systems. Water Resour. Res., 49, 915935, doi:10.1002/wrcr.20068.

    • Search Google Scholar
    • Export Citation
  • Zadeh, L. A., 1965: Fuzzy sets. Inf. Control, 8, 338353, doi:10.1016/S0019-9958(65)90241-X.

  • Zadeh, L. A., 1978: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst., 1, 328, doi:10.1016/0165-0114(78)90029-5.

  • Zhang, K., Achari G. , and Li H. , 2009a: A comparison of numerical solutions of partial differential equations with probabilistic and possibilistic parameters for the quantification of uncertainty in subsurface solute transport. J. Contam. Hydrol., 110, 4559, doi:10.1016/j.jconhyd.2009.08.005.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., Li H. , and Achari G. , 2009b: Fuzzy-stochastic characterization of site uncertainty and variability in groundwater flow and contaminant transport through a heterogeneous aquifer. J. Contam. Hydrol., 106, 7382, doi:10.1016/j.jconhyd.2009.01.003.

    • Search Google Scholar
    • Export Citation
  • Zimmermann, H. J., 2001: Fuzzy Set Theory—and Its Applications. 4th ed. Kluwer Academic, 514 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 644 426 148
PDF Downloads 174 48 1