Modification and Validation of Priestley–Taylor Model for Estimating Cotton Evapotranspiration under Plastic Mulch Condition

Zhipin Ai Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhipin Ai in
Current site
Google Scholar
PubMed
Close
and
Yonghui Yang Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China

Search for other papers by Yonghui Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Compared with more comprehensive physical algorithms such as the Penman–Monteith model, the Priestley–Taylor model is widely used in estimating evapotranspiration for its robust ability to capture evapotranspiration and simplicity of use. The key point in successfully using the Priestley–Taylor model is to find a proper Priestley–Taylor coefficient, which is variable under different environmental conditions. Based on evapotranspiration partition and plant physiological limitation, this study developed a new model for estimating the Priestley–Taylor coefficient incorporating the effects of three easily obtainable parameters such as leaf area index (LAI), air temperature, and mulch fraction. Meanwhile, the effects of plastic film on the estimation of net radiation and soil heat flux were fully considered. The reliability of the modified Priestley–Taylor model was testified using observed cotton evapotranspiration from eddy covariance in two growing seasons, with high coefficients of determination of 0.86 and 0.81 in 2013 and 2014, respectively. Then, the modified model was further validated by estimating cotton evapotranspiration under three fractions of mulch cover: 0%, 60%, and 100%. The estimated values agreed well with the measured values via water balance analysis. It can be found that seasonal variation of the modified Priestley–Taylor coefficient showed a more reasonable pattern compared with the original coefficient of 1.26. Sensitivity analysis showed that the modified Priestley–Taylor coefficient was more sensitive to LAI than to air temperature. Overall, the modified model has much higher accuracy and could be used for evapotranspiration estimation under plastic mulch condition.

Corresponding author address: Prof. Yonghui Yang, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China. E-mail: yonghui.yang@sjziam.ac.cn

Abstract

Compared with more comprehensive physical algorithms such as the Penman–Monteith model, the Priestley–Taylor model is widely used in estimating evapotranspiration for its robust ability to capture evapotranspiration and simplicity of use. The key point in successfully using the Priestley–Taylor model is to find a proper Priestley–Taylor coefficient, which is variable under different environmental conditions. Based on evapotranspiration partition and plant physiological limitation, this study developed a new model for estimating the Priestley–Taylor coefficient incorporating the effects of three easily obtainable parameters such as leaf area index (LAI), air temperature, and mulch fraction. Meanwhile, the effects of plastic film on the estimation of net radiation and soil heat flux were fully considered. The reliability of the modified Priestley–Taylor model was testified using observed cotton evapotranspiration from eddy covariance in two growing seasons, with high coefficients of determination of 0.86 and 0.81 in 2013 and 2014, respectively. Then, the modified model was further validated by estimating cotton evapotranspiration under three fractions of mulch cover: 0%, 60%, and 100%. The estimated values agreed well with the measured values via water balance analysis. It can be found that seasonal variation of the modified Priestley–Taylor coefficient showed a more reasonable pattern compared with the original coefficient of 1.26. Sensitivity analysis showed that the modified Priestley–Taylor coefficient was more sensitive to LAI than to air temperature. Overall, the modified model has much higher accuracy and could be used for evapotranspiration estimation under plastic mulch condition.

Corresponding author address: Prof. Yonghui Yang, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China. E-mail: yonghui.yang@sjziam.ac.cn
Save
  • Agam, N., and Coauthors, 2010: Application of the Priestley–Taylor approach in a two-source surface energy balance model. J. Hydrometeor., 11, 185198, doi:10.1175/2009JHM1124.1.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., Pereira L. S. , Raes D. , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Arasteh, P. D., and Tajrishy M. , 2008: Calibrating Priestley–Taylor model to estimate open water evaporation under regional advection using volume balance method–case study: Chahnimeh reservoir, Iran. J. Appl. Sci., 8, 40974104, doi:10.3923/jas.2008.4097.4104.

    • Search Google Scholar
    • Export Citation
  • Benli, B., Bruggeman A. , Oweis T. , and Ustun H. , 2010: Performance of Penman–Monteith FAO56 in a semiarid highland environment. J. Irrig. Drain. Eng., 136, 757765, doi:10.1061/(ASCE)IR.1943-4774.0000249.

    • Search Google Scholar
    • Export Citation
  • Berengena, J., and Gavilàn P. , 2005: Reference evapotranspiration estimation in a highly advective semiarid environment. J. Irrig. Drain. Eng., 131, 147163, doi:10.1061/(ASCE)0733-9437(2005)131:2(147).

    • Search Google Scholar
    • Export Citation
  • Castellvi, F., Stockle C. O. , Perez P. J. , and Ibanez M. , 2001: Comparison of methods for applying the Priestley–Taylor equation at a regional scale. Hydrol. Processes, 15, 16091620, doi:10.1002/hyp.227.

    • Search Google Scholar
    • Export Citation
  • Davies, J. A., and Allen C. D. , 1973: Equilibrium, potential and actual evaporation from cropped surfaces in southern Ontario. J. Appl. Meteor., 12, 649657, doi:10.1175/1520-0450(1973)012<0649:EPAAEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Bruin, H. A. R., 1983: A model for the Priestley–Taylor parameter. J. Climate Appl. Meteor., 22, 572578, doi:10.1175/1520-0450(1983)022<0572:AMFTPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diaz-Espejo, A., Verhoef A. , and Knight R. , 2005: Illustration of micro-scale advection using grid-pattern mini-lysimeters. Agric. For. Meteor., 129, 3952, doi:10.1016/j.agrformet.2004.12.001.

    • Search Google Scholar
    • Export Citation
  • Ding, R., Kang S. , Li F. , Zhang Y. , and Tong L. , 2013: Evapotranspiration measurement and estimation using modified Priestley–Taylor model in an irrigated maize field with mulching. Agric. For. Meteor., 168, 140148, doi:10.1016/j.agrformet.2012.08.003.

    • Search Google Scholar
    • Export Citation
  • Ershadi, A., McCabe M. F. , Evans J. P. , Chaney N. W. , and Wood E. F. , 2014: Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteor., 187, 4661, doi:10.1016/j.agrformet.2013.11.008.

    • Search Google Scholar
    • Export Citation
  • Fan, X., Chen H. , Xia X. , and Yu Y. , 2015: Increase in surface albedo caused by agricultural plastic film. Atmos. Sci. Lett., 16, 291296, doi:10.1002/asl2.556.

    • Search Google Scholar
    • Export Citation
  • Finkelstein, P. L., and Sims P. F. , 2001: Sampling error in eddy correlation flux measurements. J. Geophys. Res., 106, 35033509, doi:10.1029/2000JD900731.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., Tu K. P. , and Baldocchi D. D. , 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919, doi:10.1016/j.rse.2007.06.025.

    • Search Google Scholar
    • Export Citation
  • Ham, J. M., Kluitenberg G. J. , and Lamont W. J. , 1993: Optical properties of plastic mulches affect the field temperature regime. J. Amer. Soc. Hortic. Sci., 118, 188193.

    • Search Google Scholar
    • Export Citation
  • Hunsaker, D. J., French A. N. , Clarke T. R. , and El-Shikha D. M. , 2011: Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrig. Sci., 29, 2743, doi:10.1007/s00271-010-0213-9.

    • Search Google Scholar
    • Export Citation
  • June, T., Evans J. R. , and Farquhar G. D. , 2004: A simple new equation for the reversible temperature dependence of photosynthetic electron transport: A study on soybean leaf. Funct. Plant Biol., 31, 275283, doi:10.1071/FP03250.

    • Search Google Scholar
    • Export Citation
  • Kasirajan, S., and Ngouajio M. , 2012: Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev., 32, 501529, doi:10.1007/s13593-011-0068-3.

    • Search Google Scholar
    • Export Citation
  • Kljun, N., Calanca P. , Rotach M. W. , and Schmid H. P. , 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503523, doi:10.1023/B:BOUN.0000030653.71031.96.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., Stannard D. I. , and Allwine K. J. , 1996: Variability in surface energy flux partitioning during Washita 92: Resulting effects on Penman–Monteith and Priestley–Taylor parameters. Agric. For. Meteor., 82, 171193, doi:10.1016/0168-1923(96)02334-9.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., Thornton P. E. , Oleson K. W. , and Bonan G. B. , 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8, 862880, doi:10.1175/JHM596.1.

    • Search Google Scholar
    • Export Citation
  • Lei, H. M., and Yang D. W. , 2010: Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agric. For. Meteor., 150, 581589, doi:10.1016/j.agrformet.2010.01.022.

    • Search Google Scholar
    • Export Citation
  • Lhomme, J. P., 1997: A theoretical basis for the Priestley–Taylor coefficient. Bound.-Layer Meteor., 82, 179191, doi:10.1023/A:1000281114105.

    • Search Google Scholar
    • Export Citation
  • Liakatas, A., Clark J. A. , and Monteith J. L. , 1986: Measurements of the heat balance under plastic mulches. Part I. Radiation balance and soil heat flux. Agric. For. Meteor., 36, 227239, doi:10.1016/0168-1923(86)90037-7.

    • Search Google Scholar
    • Export Citation
  • Liu, C. A., Jin S. L. , Zhou L. M. , Jia Y. , Li F. M. , Xiong Y. C. , and Li X. G. , 2009: Effects of plastic film mulch and tillage on maize productivity and soil parameters. Eur. J. Agron., 31, 241249, doi:10.1016/j.eja.2009.08.004.

    • Search Google Scholar
    • Export Citation
  • Liu, M. X., Yang J. S. , Li X. M. , Yu M. , and Wang J. , 2013: Numerical simulation of soil water dynamics in a drip irrigated cotton field under plastic mulch. Pedosphere, 23, 620635, doi:10.1016/S1002-0160(13)60055-7.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., and Foken T. , 2006: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteor. Z., 15, 597609, doi:10.1127/0941-2948/2006/0167.

    • Search Google Scholar
    • Export Citation
  • Moffat, R. J., 1988: Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci., 1, 317, doi:10.1016/0894-1777(88)90043-X.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, J. B., and Coauthors, 1997: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol., 188–189, 589611, doi:10.1016/S0022-1694(96)03194-0.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, J. B., Clement R. , Finnigan J. , and Meyers T. , 2004: Averaging, detrending and filtering of eddy covariance time series. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, X. Lee, W. J. Massman, and B. E. Law, Eds., Kluwer Academic, 7–31.

  • Morgan, C. L. S., Norman J. M. , and Lowery B. , 2003: Estimating plant-available water across a field with an inverse yield model. Soil. Sci. Soc. Amer. J., 67, 620629, doi:10.2136/sssaj2003.0620.

    • Search Google Scholar
    • Export Citation
  • Oliver, H., and Oliver S. , 2003: Meteorologist’s profile—John Dalton. Weather, 58, 206211, doi:10.1256/wea.202.02.

  • Parlange, M. B., and Katul G. G. , 1992: Estimation of the diurnal variation of potential evaporation from a wet bare soil surface. J. Hydrol., 132, 7189, doi:10.1016/0022-1694(92)90173-S.

    • Search Google Scholar
    • Export Citation
  • Pereira, A. R., 2004: The Priestley–Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agric. For. Meteor., 125, 305313, doi:10.1016/j.agrformet.2004.04.002.

    • Search Google Scholar
    • Export Citation
  • Priestley, C., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramakrishna, A., Tam H. M. , Wani S. P. , and Long T. D. , 2006: Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res., 95, 115125, doi:10.1016/j.fcr.2005.01.030.

    • Search Google Scholar
    • Export Citation
  • Rana, G., and Katerji N. , 2000: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron., 13, 125153, doi:10.1016/S1161-0301(00)00070-8.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, W. H., and Jasechko S. , 2014: Transpiration in the global water cycle. Agric. For. Meteor., 189–190, 115117, doi:10.1016/j.agrformet.2014.01.011.

    • Search Google Scholar
    • Export Citation
  • Slatyer, R. O., and McIlroy I. C. , 1961: Practical Microclimatology with Special Reference to the Water Factor in Soil–Plant–Atmosphere Relationships. CSIRO and UNESCO, 338 pp.

  • Stannard, D. I., 1993: Comparison of Penman–Monteith, Shuttleworth–Wallace, and modified Priestley–Taylor evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resour. Res., 29, 13791392, doi:10.1029/93WR00333.

    • Search Google Scholar
    • Export Citation
  • Sterling, S. M., Ducharne A. , and Polcher J. , 2012: The impact of global land-cover change on the terrestrial water cycle. Nat. Climate Change, 3, 385390, doi:10.1038/nclimate1690.

    • Search Google Scholar
    • Export Citation
  • Tanner, C. B., and Jury W. A. , 1976: Estimating evaporation and transpiration from a row crop during incomplete cover. Agron. J., 68, 239243, doi:10.2134/agronj1976.00021962006800020007x.

    • Search Google Scholar
    • Export Citation
  • Tarara, J. M., 2000: Microclimate modification with plastic mulch. HortScience, 35, 169180.

  • Tayir, X., Hu Q. , Lu X. , and Li L. H. , 2006: Analyses of temperature and light characteristics for drip irrigation under plastic film cotton canopy at blossoming and boll-forming stages. J. Shihezi Univ. Nat. Sci., 24, 671674.

    • Search Google Scholar
    • Export Citation
  • Turner, M. G., 1989: Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst., 20, 171197, doi:10.1146/annurev.es.20.110189.001131.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and Mahrt L. , 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526, doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Good S. P. , and Caylor K. K. , 2014: Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett., 41, 67536757, doi:10.1002/2014GL061439.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., Pearman G. I. , and Leuning R. , 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, doi:10.1002/qj.49710644707.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1982: Some comments on the evaluation of model performance. Bull. Amer. Meteor. Soc., 63, 13091369, doi:10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, C. Y., and Chen D. , 2005: Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrol. Processes, 19, 37173734, doi:10.1002/hyp.5853.

    • Search Google Scholar
    • Export Citation
  • Yang, Q. D., Zuo H. C. , Xiao X. , Wang S. J. , Chen B. L. , and Chen J. W. , 2012: Modelling the effects of plastic mulch on water, heat and CO2 fluxes over cropland in an arid region. J. Hydrol., 452–453, 102118, doi:10.1016/j.jhydrol.2012.05.041.

    • Search Google Scholar
    • Export Citation
  • Yao, Y. J., and Coauthors, 2014: Validation and application of the modified satellite-based Priestley–Taylor algorithm for mapping terrestrial evapotranspiration. Remote Sens., 6, 880904, doi:10.3390/rs6010880.

    • Search Google Scholar
    • Export Citation
  • Yoder, R. E., Odhiambo L. O. , and Wright W. C. , 2005: Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid southeast United States. Appl. Eng. Agric., 21, 197202, doi:10.13031/2013.18153.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Zhou G. , Wang Y. , Yang F. , and Nilsson C. , 2012: Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China. Hydrol. Processes, 26, 379386, doi:10.1002/hyp.8136.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., Liu C. M. , Yu Q. , Shen Y. J. , Kendy E. , Kondoh A. , Tang C. Y. , and Sun H. Y. , 2004: Energy fluxes and the Priestley–Taylor parameter over winter wheat and maize in the North China Plain. Hydrol. Processes, 18, 22352246, doi:10.1002/hyp.5528.

    • Search Google Scholar
    • Export Citation
  • Zhong, R. S., Dong X. G. , and Ma Y. J. , 2009: Sustainable water saving: new concept of modern agricultural water saving, starting from development of Xinjiang’s agricultural irrigation over the last 50 years. Irrig. Drain., 58, 383392, doi:10.1002/ird.414.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2712 678 82
PDF Downloads 1958 305 13