Precipitation Deficit Flash Droughts over the United States

Kingtse C. Mo NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Kingtse C. Mo in
Current site
Google Scholar
PubMed
Close
and
Dennis P. Lettenmaier Department of Geography, University of California, Los Angeles, Los Angeles, California

Search for other papers by Dennis P. Lettenmaier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Flash drought refers to relatively short periods of warm surface temperature and anomalously low and rapid decreasing soil moisture (SM). Based on the physical mechanisms associated with flash droughts, these events are classified into two categories: heat wave and precipitation P deficit flash droughts. In previous work, the authors have defined heat wave flash droughts as resulting from the confluence of severe warm air temperature Tair, which increases evapotranspiration (ET), and anomalously low and decreasing SM. Here, a second type of flash drought caused by precipitation deficits is explored. The authors term these events P-deficit flash droughts, which they associate with lack of P. Precipitation deficits cause ET to decrease and temperature to increase. The P-deficit flash droughts are analyzed based on observations of P, Tair, and SM and ET reconstructed using land surface models for the period 1916–2013. The authors find that P-deficit flash droughts are more common than heat wave flash droughts. They are about twice as likely to occur as heat wave flash droughts over the conterminous United States. They are most prevalent over the southern United States with maxima over the southern Great Plains and the Southwest, in contrast to heat wave flash droughts that are mostly likely to occur over the Midwest and the Pacific Northwest, where the vegetation cover is dense.

Corresponding author address: Kingtse Mo, NOAA/NWS/NCEP/Climate Prediction Center, 5830 University Research Ct., College Park, MD 20740. E-mail: kingtse.mo@noaa.gov

Abstract

Flash drought refers to relatively short periods of warm surface temperature and anomalously low and rapid decreasing soil moisture (SM). Based on the physical mechanisms associated with flash droughts, these events are classified into two categories: heat wave and precipitation P deficit flash droughts. In previous work, the authors have defined heat wave flash droughts as resulting from the confluence of severe warm air temperature Tair, which increases evapotranspiration (ET), and anomalously low and decreasing SM. Here, a second type of flash drought caused by precipitation deficits is explored. The authors term these events P-deficit flash droughts, which they associate with lack of P. Precipitation deficits cause ET to decrease and temperature to increase. The P-deficit flash droughts are analyzed based on observations of P, Tair, and SM and ET reconstructed using land surface models for the period 1916–2013. The authors find that P-deficit flash droughts are more common than heat wave flash droughts. They are about twice as likely to occur as heat wave flash droughts over the conterminous United States. They are most prevalent over the southern United States with maxima over the southern Great Plains and the Southwest, in contrast to heat wave flash droughts that are mostly likely to occur over the Midwest and the Pacific Northwest, where the vegetation cover is dense.

Corresponding author address: Kingtse Mo, NOAA/NWS/NCEP/Climate Prediction Center, 5830 University Research Ct., College Park, MD 20740. E-mail: kingtse.mo@noaa.gov
Save
  • Anderson, E. A., 1973: National Weather Service River Forecast System—Snow accumulation and ablation model. NOAA Tech. Memo. NWS HYDRO-17, 87 pp. [Available online at ftp://ftp.wcc.nrcs.usda.gov/wntsc/H&H/snow/AndersonHYDRO17.pdf.]

  • Anderson, M. C., Hain C. , Wardlow B. , Prinstein A. , Mecikalski J. R. , and Kustas W. P. , 2011: Evaluation of drought indices based on thermal remote sensing and evapotranspiration over the continental United States. J. Climate, 24, 20252044, doi:10.1175/2010JCLI3812.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Hain C. , Otkin J. , Zhan X. , Mo K. C. , Svoboda M. , Waedlow B. , and Pimstein A. , 2013: Intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. Drought Monitor classifications. J. Hydrometeor., 14, 10351056, doi:10.1175/JHM-D-12-0140.1.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., and Lettenmaier D. P. , 2006: Trends in 20th century drought over the continental United States. Geophys. Res. Lett., 33, L10403, doi:10.1029/2006GL025711.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., Clark E. A. , Wood A. W. , Hamlet A. , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, doi:10.1175/JHM450.1.

    • Search Google Scholar
    • Export Citation
  • Barnash, R. J. C., Ferral R. L. , and McGuire R. A. , 1973: A generalized streamflow simulation system: Conceptual models for digital computers. Joint Federal and State River Forecast Center, U.S. National Weather Service, and California Department of Water Resources Tech. Rep., 204 pp.

  • Chang, F. C., and Wallace J. M. , 1987: Meteorological conditions during heat waves and droughts in the United States Great Plains. Mon. Wea. Rev., 115, 12531269, doi:10.1175/1520-0493(1987)115<1253:MCDHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., Whitaker J. S. , and Sardeshmukh P. D. , 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190, doi:10.1175/BAMS-87-2-175.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Ducharne, A., Koster R. D. , Suarez M. J. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model. J. Geophys. Res., 105, 24 82324 838, doi:10.1029/2000JD900328.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Huang, J., and van den Dool H. M. , 1993: Monthly precipitation–temperature relation and temperature prediction over the United States. J. Climate, 6, 11111132, doi:10.1175/1520-0442(1993)006<1111:MPTRAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunt, E. D., Hubbard K. G. , Wilhite D. A. , Arkebauer T. , and Dutcher A. L. , 2009: The development and evaluation of a soil moisture index. Int. J. Climatol., 29, 747759, doi:10.1002/joc.1749.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koren, V., Schaake J. , Mitchell K. , Duan Q. , Chen F. , and Baker J. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, doi:10.1029/1999JD900232.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Schubert S. D. , and Suarez M. J. , 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, doi:10.1175/2008JCLI2718.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and Chen W. Y. , 1983: Statistical field significant test and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Rosenberg E. A. , Lin C. , Nijssen B. , Mishra V. , Andreadis K. , Maurer E. P. , and Lettenmaier D. P. , 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., and Dole R. M. , 1995: A diagnostic comparison of the 1980 and 1988 U.S. summer heat wave–droughts. J. Climate, 8, 16581675, doi:10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and Lettenmaier D. P. , 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, doi:10.1002/2015GL064018.

    • Search Google Scholar
    • Export Citation
  • Myoung, B., and Nielsen-Gammon J. W. , 2010a: The convective instability pathway to warm season drought in Texas. Part I: The role of convective inhibition and its modulation by soil moisture. J. Climate, 23, 44614470, doi:10.1175/2010JCLI2946.1.

    • Search Google Scholar
    • Export Citation
  • Myoung, B., and Nielsen-Gammon J. W. , 2010b: The convective instability pathway to warm season drought in Texas. Part II: Free tropospheric modulation of convective inhibition. J. Climate, 23, 44744488, doi:10.1175/2010JCLI2947.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Anderson M. C. , Hain C. , Mladenova I. E. , Basara J. B. , and Svoboda M. , 2013: Examining rapid onset drought development using the thermal infrared based evaporative stress index. J. Hydrometeor., 14, 10571074, doi:10.1175/JHM-D-12-0144.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Anderson M. C. , Hain C. , and Svoboda M. , 2014: Examining the relationship between drought development and rapid changes in the evaporative stress index. J. Hydrometeor., 15, 938956, doi:10.1175/JHM-D-13-0110.1.

    • Search Google Scholar
    • Export Citation
  • Senay, G. B., Budde M. B. , Brown T. F. , and Verdin J. P. , 2008: Mapping drought in the Southern Great Plains. 22nd Conf. on Hydrology, New Orleans, LA, Amer. Meteor. Soc., 6.8. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_134349.htm.]

  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, doi:10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Bohn T. J. , Mahanama S. P. , Koster R. D. , and Lettenmaier D. P. , 2009: Multimodel reconstruction of drought over the continental United States. J. Climate, 22, 26842712, doi:10.1175/2008JCLI2586.1.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and Lettenmaier D. P. , 2006: A test bed for new seasonal hydrologic forecasting approaches in the western United States. Bull. Amer. Meteor. Soc., 87, 16991712, doi:10.1175/BAMS-87-12-1699.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., 2013: Developing a flash drought indicator for the U.S. Great Plains. M.S. thesis, Dept. of Geological Sciences, University of Texas at Austin, 24 pp. [Available online at http://hdl.handle.net/2152/21828.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2481 943 56
PDF Downloads 1908 698 63