Evaluation of ShARP Passive Rainfall Retrievals over Snow-Covered Land Surfaces and Coastal Zones

Ardeshir M. Ebtehaj Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah

Search for other papers by Ardeshir M. Ebtehaj in
Current site
Google Scholar
PubMed
Close
,
Rafael L. Bras School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Rafael L. Bras in
Current site
Google Scholar
PubMed
Close
, and
Efi Foufoula-Georgiou Department of Civil, Environmental and Geo-Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota

Search for other papers by Efi Foufoula-Georgiou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using satellite measurements in microwave bands to retrieve precipitation over land requires proper discrimination of the weak rainfall signals from strong and highly variable background Earth surface emissions. Traditionally, land retrieval methods rely on a weak signal of rainfall scattering on high-frequency channels and make use of empirical thresholding and regression-based techniques. Because of the increased surface signal interference, retrievals over radiometrically complex land surfaces—snow-covered lands, deserts, and coastal areas—are particularly challenging for this class of retrieval techniques. This paper evaluates the results by the recently proposed Shrunken Locally Linear Embedding Algorithm for Retrieval of Precipitation (ShARP) using data from the Tropical Rainfall Measuring Mission (TRMM) satellite. The study focuses on a radiometrically complex region, partly covering the Tibetan highlands, Himalayas, and Ganges–Brahmaputra–Meghna River basins, which is unique in terms of its diverse land surface radiation regime and precipitation type, within the TRMM domain. Promising results are presented using ShARP over snow-covered land surfaces and in the vicinity of coastlines, in comparison with the land rainfall retrievals of the standard TRMM 2A12, version 7, product. The results show that ShARP can significantly reduce the rainfall overestimation due to the background snow contamination and markedly improve detection and retrieval of rainfall in the vicinity of coastlines. During the calendar year 2013, compared to TRMM 2A25, it is demonstrated that over the study domain the root-mean-square difference can be reduced up to 38% annually, while the improvement can reach up to 70% during the cold months of the year.

Corresponding author address: Ardeshir M. Ebtehaj, Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, 1600 Canyon Rd., Logan, UT 84321. E-mail: m.ebtehaj@usu.edu

Abstract

Using satellite measurements in microwave bands to retrieve precipitation over land requires proper discrimination of the weak rainfall signals from strong and highly variable background Earth surface emissions. Traditionally, land retrieval methods rely on a weak signal of rainfall scattering on high-frequency channels and make use of empirical thresholding and regression-based techniques. Because of the increased surface signal interference, retrievals over radiometrically complex land surfaces—snow-covered lands, deserts, and coastal areas—are particularly challenging for this class of retrieval techniques. This paper evaluates the results by the recently proposed Shrunken Locally Linear Embedding Algorithm for Retrieval of Precipitation (ShARP) using data from the Tropical Rainfall Measuring Mission (TRMM) satellite. The study focuses on a radiometrically complex region, partly covering the Tibetan highlands, Himalayas, and Ganges–Brahmaputra–Meghna River basins, which is unique in terms of its diverse land surface radiation regime and precipitation type, within the TRMM domain. Promising results are presented using ShARP over snow-covered land surfaces and in the vicinity of coastlines, in comparison with the land rainfall retrievals of the standard TRMM 2A12, version 7, product. The results show that ShARP can significantly reduce the rainfall overestimation due to the background snow contamination and markedly improve detection and retrieval of rainfall in the vicinity of coastlines. During the calendar year 2013, compared to TRMM 2A25, it is demonstrated that over the study domain the root-mean-square difference can be reduced up to 38% annually, while the improvement can reach up to 70% during the cold months of the year.

Corresponding author address: Ardeshir M. Ebtehaj, Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, 1600 Canyon Rd., Logan, UT 84321. E-mail: m.ebtehaj@usu.edu
Save
  • Bauer, P., Amayenc P. , Kummerow C. D. , and Smith E. A. , 2001: Over-ocean rainfall retrieval from multisensor data of the Tropical Rainfall Measuring Mission. Part II: Algorithm implementation. J. Atmos. Oceanic Technol., 18, 18381855, doi:10.1175/1520-0426(2001)018<1838:OORRFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, W., and Chase R. , 1992: Determination of mean rainfall from the Special Sensor Microwave/Imager (SSM/I) using a mixed lognormal distribution. J. Atmos. Oceanic Technol., 9, 129141, doi:10.1175/1520-0426(1992)009<0129:DOMRFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, W., L’Ecuyer T. , and Kummerow C. , 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, doi:10.1175/JAM2331.1.

    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., Chiu L. S. , Kummerow C. , Meng J. , and Wilheit T. T. , 1999: First results of the TRMM Microwave Imager (TMI) monthly oceanic rain rate: Comparison with SSM/I. Geophys. Res. Lett., 26, 23792382, doi:10.1029/1998GL900452.

    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., Bras R. L. , and Foufoula-Georgiou E. , 2015: Shrunken locally linear embedding for passive microwave retrieval of precipitation. IEEE Trans. Geosci. Remote., 53, 37203736, doi:10.1109/TGRS.2014.2382436.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Marks G. F. , 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12, 755770, doi:10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Grody N. C. , and Marks G. F. , 1994: Effects of surface conditions on rain identification using the DMSP-SSM/I. Remote Sens. Rev., 11, 195209, doi:10.1080/02757259409532265.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote., 51, 378398, doi:10.1109/TGRS.2012.2199121.

    • Search Google Scholar
    • Export Citation
  • Frenken, K., 2012: Irrigation in southern and eastern Asia in figures: AQUASTAT Survey—2011. FAO Water Rep. 37, FAO Land and Water Division, 487 pp.

  • Gopalan, K., Wang N.-Y. , Ferraro R. , and Liu C. , 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, doi:10.1175/2010JTECHA1454.1.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and Anagnostou E. N. , 2002: Use of passive microwave observations in a radar rainfall-profiling algorithm. J. Appl. Meteor., 41, 702715, doi:10.1175/1520-0450(2002)041<0702:UOPMOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., Olson W. S. , and Anagnostou E. N. , 2004: Retrieval of precipitation profiles from multiresolution, multifrequency active and passive microwave observations. J. Appl. Meteor., 43, 562575, doi:10.1175/1520-0450(2004)043<0562:ROPPFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grody, N., 1988: Surface identification using satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 26, 850859, doi:10.1109/36.7716.

    • Search Google Scholar
    • Export Citation
  • Grody, N., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435, doi:10.1029/91JD00045.

    • Search Google Scholar
    • Export Citation
  • Grody, N., 2008: Relationship between snow parameters and microwave satellite measurements: Theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz. J. Geophys. Res., 113, D22108, doi:10.1029/2007JD009685.

    • Search Google Scholar
    • Export Citation
  • Grody, N., and Weng F. , 2008: Microwave emission and scattering from deserts: Theory compared with satellite measurements. IEEE Trans. Geosci. Remote Sens., 46, 361375, doi:10.1109/TGRS.2007.909920.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. I. , 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Giglio L. , 1994a: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteor., 33, 318, doi:10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Giglio L. , 1994b: A passive microwave technique for estimating rainfall and vertical structure information from space. Part II: Applications to SSM/I data. J. Appl. Meteor., 33, 1934, doi:10.1175/1520-0450(1994)033<0019:APMTFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Olson W. S. , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote., 34, 12131232, doi:10.1109/36.536538.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Masunaga H. , and Bauer P. , 2007: A next-generation microwave rainfall retrieval algorithm for use by TRMM and GPM. Measuring Precipitation from Space, V. Levizzani, P. Bauer, and F. Turk, Eds., Advances in Global Change Research, Vol. 28, Springer, 235–252, doi:10.1007/978-1-4020-5835-6_19.

  • Kummerow, C., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Randel D. L. , Kulie M. , Wang N. Y. , Ferraro R. , Munchak S. J. , and Petrovic V. , 2015: The evolution of the Goddard Profiling Algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, doi:10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Zipser E. J. , 2009: “Warm rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22, 767779, doi:10.1175/2008JCLI2641.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Zipser E. J. , Cecil D. J. , Nesbitt S. W. , and Sherwood S. , 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and Ferraro R. R. , 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • Mirza, M. Q., Warrick R. A. , Ericksen N. J. , and Kenny G. J. , 1998: Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna River basins. Hydrol. Sci. J., 43, 845858, doi:10.1080/02626669809492182.

    • Search Google Scholar
    • Export Citation
  • Moncet, J.-L., Liang P. , Galantowicz J. F. , Lipton A. E. , Uymin G. , Prigent C. , and Grassotti C. , 2011: Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control. J. Geophys. Res., 116, D16104, doi:10.1029/2010JD015429.

    • Search Google Scholar
    • Export Citation
  • Mugnai, A., Smith E. A. , and Tripoli G. J. , 1993: Foundations for statistical–physical precipitation retrieval from passive microwave satellite measurements. Part II: Emission-source and generalized weighting-function properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 32, 1739, doi:10.1175/1520-0450(1993)032<0017:FFSPRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and Skofronick-Jackson G. , 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, doi:10.1016/j.atmosres.2012.10.011.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., and Entekhabi D. , 1996: Passive microwave remote sensing of soil moisture. J. Hydrol., 184, 101129, doi:10.1016/0022-1694(95)02970-2.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., and Li L. , 1999: Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz. IEEE Trans. Geosci. Remote Sens., 37, 7993, doi:10.1109/36.739125.

    • Search Google Scholar
    • Export Citation
  • Norouzi, H., Temimi M. , Rossow W. B. , Pearl C. , Azarderakhsh M. , and Khanbilvardi R. , 2011: The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties. Hydrol. Earth Syst. Sci., 15, 35773589, doi:10.5194/hess-15-3577-2011.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., 1989: Physical retrieval of rainfall rates over the ocean by multispectral microwave radiometry: Application to tropical cyclones. J. Geophys. Res., 94, 22672280, doi:10.1029/JD094iD02p02267.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., Kummerow C. D. , Heymsfield G. M. , and Giglio L. , 1996: A method for combined passive–active microwave retrievals of cloud and precipitation profiles. J. Appl. Meteor., 35, 17631789, doi:10.1175/1520-0450(1996)035<1763:AMFCPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994a: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices. Meteor. Atmos. Phys., 54, 7999, doi:10.1007/BF01030053.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994b: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part II: Algorithm implementation. Meteor. Atmos. Phys., 54, 101121, doi:10.1007/BF01030054.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Li K. , 2013a: Improved passive microwave retrievals of rain rate over land and ocean. Part I: Algorithm description. J. Atmos. Oceanic Technol., 30, 24932508, doi:10.1175/JTECH-D-12-00144.1.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Li K. , 2013b: Improved passive microwave retrievals of rain rate over land and ocean. Part II: Validation and intercomparison. J. Atmos. Oceanic Technol., 30, 25092526, doi:10.1175/JTECH-D-12-00184.1.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Rossow W. B. , and Matthews E. , 1997: Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res., 102, 21 86721 890, doi:10.1029/97JD01360.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Aires F. , and Rossow W. B. , 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, doi:10.1175/BAMS-87-11-1573.

    • Search Google Scholar
    • Export Citation
  • Ringerud, S., Kummerow C. , Peters-Lidard C. , Tian Y. , and Harrison K. , 2014: A comparison of microwave window channel retrieved and forward-modeled emissivities over the U.S. Southern Great Plains. IEEE Trans. Geosci. Remote Sens., 52, 23952412, doi:10.1109/TGRS.2013.2260759.

    • Search Google Scholar
    • Export Citation
  • Seto, S., Takahashi N. , and Iguchi T. , 2005: Rain/no-rain classification methods for microwave radiometer observations over land using statistical information for brightness temperatures under no-rain conditions. J. Appl. Meteor., 44, 12431259, doi:10.1175/JAM2263.1.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Johnson B. T. , 2011: Surface and atmospheric contributions to passive microwave brightness temperatures for falling snow events. J. Geophys. Res., 116, D02213, doi:10.1029/2010JD014438.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., Wang J. R. , Heymsfield G. M. , Hood R. , Manning W. , Meneghini R. , and Weinman J. A. , 2003: Combined radiometer–radar microphysical profile estimations with emphasis on high-frequency brightness temperature observations. J. Appl. Meteor., 42, 476487, doi:10.1175/1520-0450(2003)042<0476:CRRMPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, E., Xiang X. , Mugnai A. , and Tripoli G. , 1994: Design of an inversion-based precipitation profile retrieval algorithm using an explicit cloud model for initial guess microphysics. Meteor. Atmos. Phys., 54, 5378, doi:10.1007/BF01030052.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Haddad Z. S. , and You Y. , 2014a: Principal components of multifrequency microwave land surface emissivities. Part I: Estimation under clear and precipitating conditions. J. Hydrometeor., 15, 319, doi:10.1175/JHM-D-13-08.1.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Li L. , and Haddad Z. S. , 2014b: A physically based soil moisture and microwave emissivity data set for Global Precipitation Measurement (GPM) applications. IEEE Trans. Geosci. Remote., 52, 76377650, doi:10.1109/TGRS.2014.2315809.

    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., Liu C. , Ferraro R. , Wolff D. , Zipser E. , and Kummerow C. , 2009: TRMM 2A12 land precipitation product—Status and future plans. J. Meteor. Soc. Japan., 87A, 237253, doi:10.2151/jmsj.87A.237.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., Chang A. T. C. , Rao M. S. V. , Rodgers E. B. , and Theon J. S. , 1977: A satellite technique for quantitatively mapping rainfall rates over the oceans. J. Appl. Meteor., 16, 551560, doi:10.1175/1520-0450(1977)016<0551:ASTFQM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., Chang A. T. C. , and Chiu L. S. , 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136, doi:10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., Kummerow C. , and Ferraro R. , 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204214, doi:10.1109/TGRS.2002.808312.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 305 124 35
PDF Downloads 162 65 20