Orographic Precipitation in Coastal Southern Chile: Mean Distribution, Temporal Variability, and Linear Contribution

R. Garreaud Department of Geophysics, and Center for Climate and Resilience Research, Universidad de Chile, Santiago, Chile

Search for other papers by R. Garreaud in
Current site
Google Scholar
PubMed
Close
,
M. Falvey Department of Geophysics, Universidad de Chile, Santiago, Chile

Search for other papers by M. Falvey in
Current site
Google Scholar
PubMed
Close
, and
A. Montecinos Department of Geophysics, and Centro de Recursos Hídricos para la Agricultura y Minería, Universidad de Concepción, Concepción, Chile

Search for other papers by A. Montecinos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Nahuelbuta Mountains (NM) are a semielliptical massif 1300 m high in coastal southern Chile (37°–38°S) facing frontal storms that move from the Pacific. Mean precipitation between 900 and 1200 mm yr−1 is observed in the surrounding lowland, but river flow measurements suggest values ≥3000 mm yr−1 atop the mountains. To verify and characterize such marked orographic enhancement, 15 rain gauges were deployed around and over the NM. The observations were supplemented by a high-resolution WRF simulation and linear theory (LT) modeling during the winter of 2011. The estimated mean precipitation increases gradually from offshore (~1000 mm yr−1) to the north-facing foothills (2000 mm yr−1). The precipitation rapidly increases in the upslope sector to reach ~4000 mm yr−1 over the northern half of the NM elevated plateau, and decreases farther south to reach background values 20–30 km downstream of the mountains. The upstream (downstream) orographic enhancement (suppression) was relatively uniform among storms when considering event accumulations but varied substantially within each storm, with larger modifications during pre- and postfrontal stages and minor modifications during the brief but intense frontal passage. WRF results are in good agreement with observations in terms of seasonal and daily mean rainfall distributions, as well as temporal variability. Given its linear, steady-state formulation, the LT model cannot resolve rainfall variability at short (hourly) time scales, which in WRF is at least characterized by transient, mesoscale rainbands. Nonetheless, the rainbands are mobile so the accumulation field at monthly or longer time scales produced by the linear model is remarkably similar to its WRF counterpart.

Corresponding author address: Dr. René Garreaud, Department of Geophysics, Universidad de Chile, Blanco Encalada 2002, Santiago 2777, Chile. E-mail: rgarreau@dgf.uchile.cl

Abstract

The Nahuelbuta Mountains (NM) are a semielliptical massif 1300 m high in coastal southern Chile (37°–38°S) facing frontal storms that move from the Pacific. Mean precipitation between 900 and 1200 mm yr−1 is observed in the surrounding lowland, but river flow measurements suggest values ≥3000 mm yr−1 atop the mountains. To verify and characterize such marked orographic enhancement, 15 rain gauges were deployed around and over the NM. The observations were supplemented by a high-resolution WRF simulation and linear theory (LT) modeling during the winter of 2011. The estimated mean precipitation increases gradually from offshore (~1000 mm yr−1) to the north-facing foothills (2000 mm yr−1). The precipitation rapidly increases in the upslope sector to reach ~4000 mm yr−1 over the northern half of the NM elevated plateau, and decreases farther south to reach background values 20–30 km downstream of the mountains. The upstream (downstream) orographic enhancement (suppression) was relatively uniform among storms when considering event accumulations but varied substantially within each storm, with larger modifications during pre- and postfrontal stages and minor modifications during the brief but intense frontal passage. WRF results are in good agreement with observations in terms of seasonal and daily mean rainfall distributions, as well as temporal variability. Given its linear, steady-state formulation, the LT model cannot resolve rainfall variability at short (hourly) time scales, which in WRF is at least characterized by transient, mesoscale rainbands. Nonetheless, the rainbands are mobile so the accumulation field at monthly or longer time scales produced by the linear model is remarkably similar to its WRF counterpart.

Corresponding author address: Dr. René Garreaud, Department of Geophysics, Universidad de Chile, Blanco Encalada 2002, Santiago 2777, Chile. E-mail: rgarreau@dgf.uchile.cl
Save
  • Adam, J. C., and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., Clark E. A. , Lettenmaier D. P. , and Wood E. F. , 2006: Correction of global precipitation products for orographic effects. J. Climate, 19, 1538, doi:10.1175/JCLI3604.1.

    • Search Google Scholar
    • Export Citation
  • Alpert, P., and Shafir H. , 1989: Mesoγ-scale distribution of orographic precipitation: Numerical study and comparison with precipitation derived from radar measurements. J. Appl. Meteor., 28, 11051117, doi:10.1175/1520-0450(1989)028<1105:MSDOOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anders, A. M., Roe G. H. , Durran D. R. , and Minder J. R. , 2007: Small-scale spatial gradients in climatological precipitation on the Olympic Peninsula. J. Hydrometeor., 8, 10681081, doi:10.1175/JHM610.1.

    • Search Google Scholar
    • Export Citation
  • Anders, A. M., Roe G. H. , Montgomery D. R. , and Hallet B. , 2008: Influence of precipitation phase on the form of mountain ranges. Geology, 36, 479482, doi:10.1130/G24821A.1.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Lettenmaier D. P. , 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev., 121, 11951214, doi:10.1175/1520-0493(1993)121<1195:DMOTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Lettenmaier D. P. , 1994: Incorporation of an evaporative cooling scheme into a dynamic model of orographic precipitation. Mon. Wea. Rev., 122, 27772783, doi:10.1175/1520-0493(1994)122<2777:IOAECS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barstad, I., and Smith R. B. , 2005: Evaluation of an orographic precipitation model. J. Hydrometeor., 6, 8599, doi:10.1175/JHM-404.1.

    • Search Google Scholar
    • Export Citation
  • Basist, A., Bell G. D. , and Meentemeyer V. , 1994: Statistical relationships between topography and precipitation patterns. J. Climate, 7, 13051315, doi:10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341, doi:10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., Hill F. , and Pardoe C. , 1974: Structure and mechanism of precipitation and the effect of orography in a wintertime warm sector. Quart. J. Roy. Meteor. Soc., 100, 309330, doi:10.1002/qj.49710042505.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., Pardoe C. , and Hill F. , 1975: The nature of orographic rain at wintertime cold fronts. Quart. J. Roy. Meteor. Soc., 101, 333352, doi:10.1002/qj.49710142815.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, doi:10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2008: Two-dimensional idealized simulations of the impact of multiple windward ridges on orographic precipitation. J. Atmos. Sci., 65, 509523, doi:10.1175/2007JAS2305.1.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Mass C. F. , 1996: An observational and modeling study of the interaction of low-level southwesterly flow with the Olympic Mountains during COAST IOP 4. Mon. Wea. Rev., 124, 21522175, doi:10.1175/1520-0493(1996)124<2152:AOAMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Mass C. F. , and Smull B. F. , 1999: An observational and numerical study of a cold front interacting with the Olympic Mountains during COAST IOP5. Mon. Wea. Rev., 127, 13101334, doi:10.1175/1520-0493(1999)127<1310:AOANSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Smull B. F. , and Yang M.-J. , 2002: Numerical simulations of a landfalling cold front observed during COAST: Rapid evolution and responsible mechanisms. Mon. Wea. Rev., 130, 19451966, doi:10.1175/1520-0493(2002)130<1945:NSOALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cosma, S., Richard E. , and Miniscloux F. , 2002: The role of small-scale orographic features in the spatial distribution of precipitation. Quart. J. Roy. Meteor. Soc., 128, 7592, doi:10.1256/00359000260498798.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Taylor G. , and Gibson W. , 1997: The PRISM approach to mapping precipitation and temperature. Preprints, 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 1012.

  • DGA, 1987: Balance Hídrico de Chile. Ministry of Public Works, Tech. Rep., 23 pp. [Available online at http://sad.dga.cl/ipac20.]

  • Donoso, C., González M. E. , Cortés M. , González C. , Donoso P. , and Hernández M. , 2008: Poblaciones de araucaria enana (Araucaria araucana) en la Cordillera de Nahuelbuta, Chile. Bosque (Valdivia), 29, 170175, doi:10.4067/S0717-92002008000200010.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and Klemp J. B. , 1982: The effects of moisture on trapped mountain lee waves. J. Atmos. Sci., 39, 24902506, doi:10.1175/1520-0469(1982)039<2490:TEOMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Egger, J., and Hoinka K. , 1992: Fronts and orography. Meteor. Atmos. Phys., 48, 336, doi:10.1007/BF01029557.

  • Endlicher, W., and Mäckel R. , 1985: Natural resources, land use and degradation in the coastal zone of Arauco and the Nahuelbuta Range, central Chile. GeoJournal, 11, 4360, doi:10.1007/BF00572938.

    • Search Google Scholar
    • Export Citation
  • Falvey, M., and Garreaud R. , 2007: Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences. J. Hydrometeor., 8, 171193, doi:10.1175/JHM562.1.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and Schär C. , 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., and Schär C. , 2005: Embedded cellular convection in moist flow past topography. J. Atmos. Sci., 62, 28102828, doi:10.1175/JAS3512.1.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., 2013: Warm winter storms in central Chile. J. Hydrometeor., 14, 15151534, doi:10.1175/JHM-D-12-0135.1.

  • Hevesi, J. A., Istok J. D. , and Flint A. L. , 1992: Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis. J. Appl. Meteor., 31, 661676, doi:10.1175/1520-0450(1992)031<0661:PEIMTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Medina S. , 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, doi:10.1175/JAS3555.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., Hobbs P. V. , Biswas K. R. , and Davis W. M. , 1976: Mesoscale rainbands in extratropical cyclones. Mon. Wea. Rev., 104, 868878, doi:10.1175/1520-0493(1976)104<0868:MRIEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hughes, M., Hall A. , and Fovell R. G. , 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518, doi:10.1175/2008JAS2689.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models.” J. Atmos. Sci., 57, 36863686, doi:10.1175/1520-0469(2000)057<3686:CODAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301316, doi:10.1034/j.1600-0870.2003.00025.x.

  • Jiang, Q., and Smith R. B. , 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60, 15431559, doi:10.1175/2995.1.

  • Kirshbaum, D. J., and Durran D. R. , 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682698, doi:10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and Durran D. R. , 2005: Atmospheric factors governing banded orographic convection. J. Atmos. Sci., 62, 37583774, doi:10.1175/JAS3568.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., Bryan G. H. , Rotunno R. , and Durran D. R. , 2007: The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci., 64, 15301549, doi:10.1175/JAS3924.1.

    • Search Google Scholar
    • Export Citation
  • Kunz, M., and Kottmeier C. , 2006a: Orographic enhancement of precipitation over low mountain ranges. Part I: Model formulation and idealized simulations. J. Appl. Meteor. Climatol., 45, 10251040, doi:10.1175/JAM2389.1.

    • Search Google Scholar
    • Export Citation
  • Kunz, M., and Kottmeier C. , 2006b: Orographic enhancement of precipitation over low mountain ranges. Part II: Simulations of heavy precipitation events over southwest Germany. J. Appl. Meteor. Climatol., 45, 10411055, doi:10.1175/JAM2390.1.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J., Martin J. , and Hobbs P. , 1995: Development and propagation of precipitation cores on cold fronts. Atmos. Res., 38, 177206, doi:10.1016/0169-8095(94)00093-S.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Minder J. R. , Neiman P. J. , and Sukovich E. , 2010: Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156, doi:10.1175/2010JHM1264.1.

    • Search Google Scholar
    • Export Citation
  • Matejka, T. J., Houze R. A. , and Hobbs P. V. , 1980: Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106, 2956, doi:10.1002/qj.49710644704.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., Durran D. R. , Roe G. H. , and Anders A. M. , 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839, doi:10.1002/qj.258.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and Xiu A. , 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42, 18111822, doi:10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and Reed D. W. , 1998: Relationships between extreme daily precipitation and topography in a mountainous region: A case study in Scotland. Int. J. Climatol., 18, 14391453, doi:10.1002/(SICI)1097-0088(19981115)18:13<1439::AID-JOC320>3.0.CO;2-7.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and Reed D. W. , 1999: Mapping extreme rainfall in a mountainous region using geostatistical techniques: A case study in Scotland. Int. J. Climatol., 19, 13371356, doi:10.1002/(SICI)1097-0088(199910)19:12<1337::AID-JOC421>3.0.CO;2-G.

    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and Durran D. R. , 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, doi:10.1175/2007JAS2100.1.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Roe, G. H., Montgomery D. R. , and Hallet B. , 2003: Orographic precipitation and the relief of mountain ranges. J. Geophys. Res., 108, 2315, doi:10.1029/2001JB001521.

    • Search Google Scholar
    • Export Citation
  • Sieck, L. C., Burges S. J. , and Steiner M. , 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res., 43, W01420, doi:10.1029/2005WR004519.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: A diagnostic model for estimating orographic precipitation. J. Appl. Meteor., 33, 11631175, doi:10.1175/1520-0450(1994)033<1163:ADMFEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., doi:10.5065/D6DZ069T.

  • Smith, R. B., 1988: Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci., 45, 38893896, doi:10.1175/1520-0469(1988)045<3889:LTOSFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A, 270274, doi:10.1111/j.1600-0870.1989.tb00381.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2003: A linear upslope-time-delay model for orographic precipitation. J. Hydrol., 282, 29, doi:10.1016/S0022-1694(03)00248-8.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2006: Progress on the theory of orographic precipitation. Spec. Pap. Geol. Soc. Amer., 398, 116, doi:10.1130/2006.2398(01).

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Barstad I. , 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, doi:10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Evans J. P. , 2007: Orographic precipitation and water vapor fractionation over the southern Andes. J. Hydrometeor., 8, 319, doi:10.1175/JHM555.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Barstad I. , and Bonneau L. , 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62, 177191, doi:10.1175/JAS-3376.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viale, M., and Garreaud R. , 2015: Orographic effects of the subtropical and extratropical Andes on upwind precipitating clouds. J. Geophys. Res. Atmos., 120, 49624974, doi:10.1002/2014JD023014.

    • Search Google Scholar
    • Export Citation
  • Yang, D., Goodison B. E. , Metcalfe J. R. , Golubev V. S. , Bates R. , Pangburn T. , and Hanson C. L. , 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 5468, doi:10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 607 236 21
PDF Downloads 433 145 3