A Landsat-Era Sierra Nevada Snow Reanalysis (1985–2015)

Steven A. Margulis Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Steven A. Margulis in
Current site
Google Scholar
PubMed
Close
,
Gonzalo Cortés Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Gonzalo Cortés in
Current site
Google Scholar
PubMed
Close
,
Manuela Girotto NASA Goddard Space Flight Center, Greenbelt, and GESTAR, Universities Space Research Association, Columbia, Maryland

Search for other papers by Manuela Girotto in
Current site
Google Scholar
PubMed
Close
, and
Michael Durand School of Earth Sciences, and Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

Search for other papers by Michael Durand in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A newly developed state-of-the-art snow water equivalent (SWE) reanalysis dataset over the Sierra Nevada (United States) based on the assimilation of remotely sensed fractional snow-covered area data over the Landsat 5–8 record (1985–2015) is presented. The method (fully Bayesian), resolution (daily and 90 m), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The reanalysis dataset was used to characterize the peak SWE climatology to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years. The pixel-wise peak SWE volume over the domain was found to be 20.0 km3 on average with a range of 4.0–40.6 km3. The ongoing drought in California contains the two lowest snowpack years (water years 2014 and 2015) and three of the four driest years over the examined record. It was found that the basin-average peak SWE, while underestimating the total water storage in snowpack over the year, accurately captures the interannual variability in stored snowpack water. However, the results showed that the assumption that 1 April SWE is representative of the peak SWE can lead to significant underestimation of basin-average peak SWE both on an average (21% across all basins) and on an interannual basis (up to 98% across all basin years).

Corresponding author address: Steve Margulis, Department of Civil and Environmental Engineering, University of California, Los Angeles, 5732D Boelter Hall, Los Angeles, CA 90095. E-mail: margulis@seas.ucla.edu

Abstract

A newly developed state-of-the-art snow water equivalent (SWE) reanalysis dataset over the Sierra Nevada (United States) based on the assimilation of remotely sensed fractional snow-covered area data over the Landsat 5–8 record (1985–2015) is presented. The method (fully Bayesian), resolution (daily and 90 m), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The reanalysis dataset was used to characterize the peak SWE climatology to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years. The pixel-wise peak SWE volume over the domain was found to be 20.0 km3 on average with a range of 4.0–40.6 km3. The ongoing drought in California contains the two lowest snowpack years (water years 2014 and 2015) and three of the four driest years over the examined record. It was found that the basin-average peak SWE, while underestimating the total water storage in snowpack over the year, accurately captures the interannual variability in stored snowpack water. However, the results showed that the assumption that 1 April SWE is representative of the peak SWE can lead to significant underestimation of basin-average peak SWE both on an average (21% across all basins) and on an interannual basis (up to 98% across all basin years).

Corresponding author address: Steve Margulis, Department of Civil and Environmental Engineering, University of California, Los Angeles, 5732D Boelter Hall, Los Angeles, CA 90095. E-mail: margulis@seas.ucla.edu
Save
  • Andreadis, K., and Lettenmaier D. P. , 2006: Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29, 872866, doi:10.1016/j.advwatres.2005.08.004.

    • Search Google Scholar
    • Export Citation
  • Bales, R. C., Molotch N. P. , Painter T. H. , Dettinger M. D. , Rice R. , and Dozier J. , 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, doi:10.1029/2005WR004387.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., Adam J. C. , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Barrett, A., 2003: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS) products at NSIDC. NSIDC Special Rep. 11, 19 pp. [Available online at https://nsidc.org/pubs/documents/special/nsidc_special_report_11.pdf.]

  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13, 21492175, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8.

    • Search Google Scholar
    • Export Citation
  • CDEC, 2016: California Data Exchange Center—Snow. CDEC, accessed 1 January 2016. [Available online at http://cdec.water.ca.gov/snow/current/snow/index.html.]

  • Cortés, G., Girotto M. , and Margulis S. , 2014: Analysis of sub-pixel snow and ice extent over the extratropical Andes using spectral unmixing of historical Landsat imagery. Remote Sens. Environ., 141, 6478, doi:10.1016/j.rse.2013.10.023.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., Reichle R. H. , Arsenault K. R. , Houser P. R. , Kumar S. , Verhoest N. E. C. , and Pauwels V. R. N. , 2012: Multiscale assimilation of Advanced Microwave Scanning Radiometer-EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour. Res., 48, W01522, doi:10.1029/2011WR010588.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., Redmond K. , and Cayan D. , 2004: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5, 11021116, doi:10.1175/JHM-390.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., Ralph F. M. , Das T. , Neiman P. J. , and Cayan D. R. , 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Durand, M., and Margulis S. A. , 2006: Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent. J. Hydrometeor., 7, 443457, doi:10.1175/JHM502.1.

    • Search Google Scholar
    • Export Citation
  • Durand, M., and Margulis S. A. , 2007: Correcting first-order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme. J. Geophys. Res., 112, D13121, doi:10.1029/2006JD008067.

    • Search Google Scholar
    • Export Citation
  • Durand, M., Molotch N. P. , and Margulis S. A. , 2008: A Bayesian approach to snow water equivalent reconstruction. J. Geophys. Res., 113, D20117, doi:10.1029/2008JD009894.

    • Search Google Scholar
    • Export Citation
  • Girotto, M., Cortés G. , Margulis S. A. , and Durand M. , 2014a: Examining spatial and temporal variability in snow water equivalent using a 27 year reanalysis: Kern River watershed, Sierra Nevada. Water Resour. Res., 50, 67136734, doi:10.1002/2014WR015346.

    • Search Google Scholar
    • Export Citation
  • Girotto, M., Margulis S. A. , and Durand M. , 2014b: Probabilistic SWE reanalysis as a generalization of deterministic SWE reconstruction techniques. Hydrol. Processes, 28, 38753895, doi:10.1002/hyp.9887.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Molotch N. , Waliser D. , Jepsen S. , Painter T. , and Dozier J. , 2013: Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations. Water Resour. Res., 49, 50295046, doi:10.1002/wrcr.20387.

    • Search Google Scholar
    • Export Citation
  • Homer, C., and Coauthors, 2007: Completion of the 2001 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sensing, 73 (4), 337341.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirchner, P., Bales R. C. , Molotch N. P. , Flanagan J. , and Guo Q. , 2014: LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrol. Earth Syst. Sci., 18, 42614275, doi:10.5194/hess-18-4261-2014.

    • Search Google Scholar
    • Export Citation
  • Knowles, N., and Cayan D. , 2004: Elevational dependence of projected hydrologic changes in the San Francisco estuary and watershed. Climatic Change, 62, 319336, doi:10.1023/B:CLIM.0000013696.14308.b9.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 24462469, doi:10.1175/JHM-D-13-0132.1.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17, 13811397, doi:10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Peters-Lidard C. D. , Kumar S. V. , Arsenault K. R. , and Mocko D. M. , 2015: Blending satellite-based snow depth products with in situ observations for streamflow predictions in the Upper Colorado River basin. Water Resour. Res., 51, 11821202, doi:10.1002/2014WR016606.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Minder J. R. , Neiman P. J. , and Sukovich E. , 2010: Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156, doi:10.1175/2010JHM1264.1.

    • Search Google Scholar
    • Export Citation
  • Margulis, S., Girotto M. , Cortés G. , and Durand M. , 2015: A particle batch smoother approach to snow water equivalent estimation. J. Hydrometeor., 16, 17521772, doi:10.1175/JHM-D-14-0177.1.

    • Search Google Scholar
    • Export Citation
  • Masiokas, M. H., Villalba R. , Luckman B. H. , Le Quesne C. , and Aravena J. C. , 2006: Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: Large-scale atmospheric influences and implications for water resources in the region. J. Climate, 19, 63346352, doi:10.1175/JCLI3969.1.

    • Search Google Scholar
    • Export Citation
  • Meromy, L., Molotch N. P. , Link T. E. , Fassnacht S. R. , and Rice R. , 2013: Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrol. Processes, 27, 23832400, doi:10.1002/hyp.9355.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., and Margulis S. A. , 2008: Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-resolution, multi-sensor comparison. Adv. Water Resour., 31, 15031514, doi:10.1016/j.advwatres.2008.07.017.

    • Search Google Scholar
    • Export Citation
  • Montoya, E. L., Dozier J. , and Meiring W. , 2014: Biases of April 1 snow water equivalent records in the Sierra Nevada and their associations with large-scale climate indices. Geophys. Res. Lett., 41, 59125918, doi:10.1002/2014GL060588.

    • Search Google Scholar
    • Export Citation
  • Painter, T. H., Dozier J. , Roberts D. A. , Davis R. E. , and Green R. O. , 2003: Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sens. Environ., 85, 6477, doi:10.1016/S0034-4257(02)00187-6.

    • Search Google Scholar
    • Export Citation
  • Palazzi, E., von Hardenberg J. , and Provenzale A. , 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, doi: 10.1029/2012JD018697.

    • Search Google Scholar
    • Export Citation
  • Rice, R., Bales R. C. , Painter T. H. , and Dozier J. , 2011: Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada. Water Resour. Res., 47, W08515, doi:10.1029/2010WR009278.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rittger, K., 2012: Spatial estimates of snow water equivalent in the Sierra Nevada. Ph.D. thesis, University of California, Santa Barbara, 225 pp.

  • Trujillo, E., Molotch N. P. , Goulden M. L. , Kelly A. E. , and Bales R. C. , 2012: Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci., 5, 705709, doi:10.1038/ngeo1571.

    • Search Google Scholar
    • Export Citation
  • Viviroli, D., Dürr H. H. , Messerli B. , Meybeck M. , and Weingartner R. , 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, doi:10.1029/2006WR005653.

    • Search Google Scholar
    • Export Citation
  • Winstral, A., Marks D. , and Gurney R. , 2014: Assessing the sensitivities of a distributed snow model to forcing data resolution. J. Hydrometeor., 15, 13661383, doi:10.1175/JHM-D-13-0169.1.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., Sun S. , Kahan D. S. , and Jiao Y. , 2003: Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites. J. Geophys. Res., 108, 8859, doi:10.1029/2002JD003174.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3139 761 106
PDF Downloads 1908 359 40