Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States

Paul A. Dirmeyer * George Mason University, Fairfax, Virginia

Search for other papers by Paul A. Dirmeyer in
Current site
Google Scholar
PubMed
Close
,
Jiexia Wu * George Mason University, Fairfax, Virginia

Search for other papers by Jiexia Wu in
Current site
Google Scholar
PubMed
Close
,
Holly E. Norton * George Mason University, Fairfax, Virginia

Search for other papers by Holly E. Norton in
Current site
Google Scholar
PubMed
Close
,
Wouter A. Dorigo +Vienna University of Technology, Vienna, Austria
#Laboratory of Forest and Water Management, Ghent University, Ghent, Belgium

Search for other papers by Wouter A. Dorigo in
Current site
Google Scholar
PubMed
Close
,
Steven M. Quiring @Texas A&M University, College Station, Texas

Search for other papers by Steven M. Quiring in
Current site
Google Scholar
PubMed
Close
,
Trenton W. Ford &Southern Illinois University, Carbondale, Illinois

Search for other papers by Trenton W. Ford in
Current site
Google Scholar
PubMed
Close
,
Joseph A. Santanello Jr. ** NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Joseph A. Santanello Jr. in
Current site
Google Scholar
PubMed
Close
,
Michael G. Bosilovich ** NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Michael G. Bosilovich in
Current site
Google Scholar
PubMed
Close
,
Michael B. Ek ++NOAA/National Centers for Environmental Prediction, College Park, Maryland

Search for other papers by Michael B. Ek in
Current site
Google Scholar
PubMed
Close
,
Randal D. Koster ** NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Randal D. Koster in
Current site
Google Scholar
PubMed
Close
,
Gianpaolo Balsamo ##European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Gianpaolo Balsamo in
Current site
Google Scholar
PubMed
Close
, and
David M. Lawrence @@National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David M. Lawrence in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those it is found that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely because of differences in instrumentation, calibration, and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat-dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory), and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but they poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration, or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

Corresponding author address: Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, George Mason University, 4400 University Dr., Mail Stop 6C5, Fairfax, VA 22030. E-mail: pdirmeye@gmu.edu

Abstract

Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those it is found that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely because of differences in instrumentation, calibration, and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat-dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory), and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but they poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration, or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

Corresponding author address: Paul A. Dirmeyer, Center for Ocean–Land–Atmosphere Studies, George Mason University, 4400 University Dr., Mail Stop 6C5, Fairfax, VA 22030. E-mail: pdirmeye@gmu.edu
Save
  • Albergel, C., de Rosnay P. , Balsamo G. , Isaksen L. , and Muñoz-Sabater J. , 2012: Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeor., 13, 1442–1460, doi:10.1175/JHM-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Albergel, C., and Coauthors, 2013: Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeor., 14, 1259–1277, doi:10.1175/JHM-D-12-0161.1.

    • Search Google Scholar
    • Export Citation
  • Andresen, J., Olse L. , Aichele T. , Bishop B. , Brown J. , Landis J. , Marquie S. , and Pollyea A. , 2011: Enviro-weather: A weather-based pest and crop management information system for Michigan. Seventh Int. Integrated Pest Management Symp., Memphis, TN, IPM, 16.1. [Available online at http://www.ipmcenters.org/ipmsymposium12/16-1_Andresen.pdf.]

  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Viterbo P. , Beljaars A. , van den Hurk B. , Hirschi M. , Betts A. K. , and Scipal K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623–643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389–407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Bell, J. E., and Coauthors, 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor., 14, 977–988, doi:10.1175/JHM-D-12-0146.1.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 1425–1442, doi:10.1175/JHM-D-14-0158.1.

    • Search Google Scholar
    • Export Citation
  • Bond, D., 2005: Soil Water and Temperature System (SWATS) handbook. Tech. Rep. ARM TR-063, U.S. Department of Energy, 24 pp.

  • Bosilovich, M. G., 2002: On the use and validation of mosaic heterogeneity in atmospheric numerical models. Geophys. Res. Lett. 29, 1174, doi: 10.1029/2001GL013925.

  • Bosilovich, M. G., 2013: Regional climate and variability of NASA MERRA and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteor. Climatol., 52, 1939–1951, doi:10.1175/JAMC-D-12-0291.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 1–28, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., Lei F. , Hain C. , Anderson M. C. , Scott R. L. , Billesbach D. , and Arkebauer T. , 2015: Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation. Geophys. Res. Lett., 42, 8415–8423, doi:10.1002/2015GL065929.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Lannoy, G. J. M., Koster R. D. , Reichle R. H. , Mahanama S. P. P. , and Liu Q. , 2014: An updated treatment of soil texture and associated hydraulic properties in a global land modeling system. J. Adv. Model. Earth Syst., 6, 957–979, doi:10.1002/2014MS000330.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Manabe S. , 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523–547.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2004: Soil moisture—Muddy prospects for a clear definition. GEWEX News, Vol. 14, No. 3, International GEWEX Project Office, Silver Spring, MD, 11–12.

  • Dirmeyer, P. A., 2013: Characteristics of the water cycle and land–atmosphere interactions from a comprehensive reforecast and reanalysis data set: CFSv2. Climate Dyn., 41, 1083–1097, doi:10.1007/s00382-013-1866-x.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: The Second Global Soil Wetness Project (GSWP-2): Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 1381–1397, doi:10.1175/BAMS-87-10-1381.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Kumar S. , Fennessy M. J. , Altshuler E. L. , DelSole T. , Guo Z. , Cash B. , and Straus D. , 2013: Evolution of land-driven predictability in a changing climate. J. Climate, 26, 8495–8512, doi:10.1175/JCLI-D-13-00029.1.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698, doi:10.5194/hess-15-1675-2011.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2013: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J., 12, doi:10.2136/vzj2012.0097.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2015: Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ., 162, 380–395, doi:10.1016/j.rse.2014.07.023.

    • Search Google Scholar
    • Export Citation
  • Ducharne, A., Koster R. D. , Suarez M. J. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 2. Parameter estimation and model demonstration. J. Geophys. Res., 105, 24 823–24 838, doi:10.1029/2000JD900328.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarplay J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., Robock A. , Vinnikov K. Y. , Hollinger S. E. , Liu S. , and Namkhai A. , 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11 865–11 877, doi:10.1029/2000JD900051.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and Quiring S. M. , 2014: Comparison and application of multiple methods for temporal interpolation of daily soil moisture. Int. J. Climatol., 34, 2604–2621, doi:10.1002/joc.3862.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., Dorigo W. A. , Zwieback S. , Xaver A. , and Wagner W. , 2013: Characterizing coarse-scale representativeness of in-situ soil moisture measurements from the International Soil Moisture Network. Vadose Zone J., 12, doi:10.2136/vzj2012.0170.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., Su C.-H. , Zwieback S. , Crow W. , Dorigo W. , and Wagner W. , 2016: Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf., 45, 200–211, doi:10.1016/j.jag.2015.09.002.

    • Search Google Scholar
    • Export Citation
  • Guinan, P. E., and Travlos J. S. , 2008: Missouri’s transition to a near real-time mesonet. 17th Conf. on Applied Climatology, Whistler, BC, Canada, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/13MontMet17AP/techprogram/paper_140960.htm.]

  • Guo, Z., Dirmeyer P. A. , Hu Z.-Z. , Gao X. , and Zhao M. , 2006: Evaluation of GSWP-2 soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, doi:10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Hubbard, K. G., Rosenberg N. J. , and Nielsen D. C. , 1983: Automated Weather Data Network for agriculture. J. Water Resour. Plann. Manage., 109, 213–222, doi:10.1061/(ASCE)0733-9496(1983)109:3(213).

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., Basara J. B. , Fiebrich C. A. , Crawford K. C. , Hunt E. , Fisher D. K. , Elliott R. , and Humes K. , 2008: Mesoscale monitoring of soil moisture across a statewide network. J. Atmos. Oceanic Technol., 25, 167–182, doi:10.1175/2007JTECHA993.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., Cosh M. H. , Bindlish R. , Starks P. J. , Bosch D. D. , Seyfried M. S. , Goodrich D. C. , and Moran M. S. , 2010: Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens., 48, 4256–4272, doi:10.1109/TGRS.2010.2051035.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., Mulekar M. S. , Cummings S. , and Stamates J. , 2010: The University of South Alabama Mesonet and coastal observing system: A technical and statistical overview. J. Atmos. Oceanic Technol., 27, 1417–1439, doi:10.1175/2010JTECHA1376.1.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., III, and Coauthors, 2013: Revolutionizing climate modeling with Project Athena: A multi-institutional, international collaboration. Bull. Amer. Meteor. Soc., 94, 231–245, doi:10.1175/BAMS-D-11-00043.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 809–24 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Guo Z. , Dirmeyer P. A. , Yang R. , Mitchell K. , and Puma M. J. , 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 4322–4335, doi:10.1175/2009JCLI2832.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., Reichle R. H. , Koster R. D. , Crow W. T. , and Peters-Lidard C. D. , 2009: Role of subsurface physics in the assimilation of surface soil moisture observations. J. Hydrometeor., 10, 1534–1547, doi:10.1175/2009JHM1134.1.

    • Search Google Scholar
    • Export Citation
  • Larson, K. M., Small E. E. , Gutmann E. D. , Bilich A. L. , Braun J. J. , and Zavorotny V. U. , 2008: Use of GPS receivers as a soil moisture network for water cycle studies. Geophys. Res. Lett., 35, L24405, doi:10.1029/2008GL036013.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst, 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., Leathers D. J. , DeLiberty T. L. , Quelch G. E. , Brinson K. , Butke J. , Mahmood R. , and Foster S. A. , 2005: DEOS: The Delaware Environmental Observing System. 21st Int. Conf. Interactive Information Processing Systems, San Diego, CA, Amer. Meteor. Soc., 18.10. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_87687.htm.]

  • Legates, D. R., Leathers D. J. , DeLiberty T. L. , Quelch G. E. , and Brinson K. , 2007: Delaware Environmental Observing System: An update. 23rd Int. Conf. Interactive Information Processing Systems, San Antonio, TX, Amer. Meteor. Soc., P1.2. [Available online at https://ams.confex.com/ams/87ANNUAL/techprogram/paper_120626.htm.]

  • Liu, Q., and Coauthors, 2011: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12, 750–765, doi:10.1175/JHM-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Moghaddam, M., and Coauthors, 2010: A wireless soil moisture smart sensor web using physics-based optimal control: Concept and initial demonstration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 522–535, doi:10.1109/JSTARS.2010.2052918.

    • Search Google Scholar
    • Export Citation
  • Pan, W., Boyles R. P. , White J. G. , and Heitman J. L. , 2012: Characterizing soil physical properties for soil moisture monitoring with the North Carolina Environment and Climate Observing Network. J. Atmos. Oceanic Technol., 29, 933–943, doi:10.1175/JTECH-D-11-00104.1.

    • Search Google Scholar
    • Export Citation
  • Qian, T., Dai A. , and Trenberth K. E. , 2007: Hydroclimatic trends in the Mississippi River basin from 1948 to 2004. J. Climate, 20, 4599–4614, doi:10.1175/JCLI4262.1.

    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., Ford T. W. , Wang J. K. , Khong A. , Harris E. , Lindgren T. , Goldberg D. W. , and Li Z. , 2016: North American Soil Moisture Database: Development and applications. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00263.1, in press.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , De Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Touré A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 6322–6338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Ya. , Schlosser C. A. , Speranskaya N. A. , and Xue Y. , 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate, 8, 15–35, doi:10.1175/1520-0442(1995)008<0015:UOMSMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381–394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., and Paetzold R. F. , 2001: SNOTEL (SNOwpack TELemetry) and SCAN (Soil Climate Analysis Network). Automated Weather Stations for Applications in Agriculture and Water Resources Management: Current Use and Future Perspectives, K. G. Hubbard and M. V. K. Sivakumar, Eds., AGM-3, WMO/TD 1074, WMO, 187–194. [Available online at http://www.wamis.org/agm/pubs/agm3/WMO-TD1074.pdf.]

  • Schaefer, G. L., Cosh M. H. , and Jackson T. J. , 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 2073–2077, doi:10.1175/2007JTECHA930.1.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and Milly P. C. D. , 2002: A model-based investigation of soil moisture predictability and associated climate predictability. J. Hydrometeor., 3, 483–501, doi:10.1175/1525-7541(2002)003<0483:AMBIOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., Burgett W. S. , Haynie K. B. , Sonmez I. , Skwira G. D. , Doggett A. L. , and Lipe J. W. , 2005: The West Texas Mesonet: A technical overview. J. Atmos. Oceanic Technol., 22, 211–222, doi:10.1175/JTECH-1690.1.

    • Search Google Scholar
    • Export Citation
  • Stillman, S., Ninneman J. , Zeng X. , Franz T. , Scott R. L. , Shuttleworth W. J. , and Cummins K. , 2014: Summer soil moisture spatiotemporal variability in southeastern Arizona. J. Hydrometeor., 15, 1473–1485, doi:10.1175/JHM-D-13-0173.1.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Ya., and Yeserkepova I. B. , 1991: Soil moisture, empirical data and model results. J. Climate, 4, 66–79, doi:10.1175/1520-0442(1991)004<0066:SMEDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Ya., Robock A. , Speranskaya N. A. , and Schlosser C. A. , 1996: Scales of temporal and spatial variability of midlatitude soil moisture at different levels. J. Geophys. Res., 101, 7163–7174, doi:10.1029/95JD02753.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Ya., Robock A. , Qiu S. , and Entin J. K. , 1999: Optimal design of surface networks for observation of soil moisture. J. Geophys. Res., 104, 19 743–19 749, doi:10.1029/1999JD900060.

    • Search Google Scholar
    • Export Citation
  • Wei, J., Dirmeyer P. A. , and Guo Z. , 2008: Sensitivities of soil wetness simulation to uncertainties in precipitation and radiation. Geophys. Res. Lett., 35, L15703, doi:10.1029/2008GL034494.

    • Search Google Scholar
    • Export Citation
  • Wei, J., Dirmeyer P. A. , and Guo Z. , 2010: How much do different land models matter for climate simulation? Part II: A temporal decomposition of land–atmosphere coupling strength. J. Climate, 23, 3135–3145, doi:10.1175/2010JCLI3178.1.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Ek M. , Wu Y. , Ford T. , and Quiring S. , 2015: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeor., 16, 1962–1980, doi:10.1175/JHM-D-14-0096.1.

  • Zamora, R. J., Ralph F. M. , Clark E. , and Schneider T. , 2011: The NOAA Hydrometeorology Testbed soil moisture observation networks: Design, instrumentation, and preliminary results. J. Atmos. Oceanic Technol., 28, 1129–1140, doi:10.1175/2010JTECHA1465.1.

    • Search Google Scholar
    • Export Citation
  • Zreda, M., Shuttleworth W. J. , Zeng X. , Zweck C. , Desilets D. , Franz T. , and Rosolem R. , 2012: COSMOS: The Cosmic-Ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci., 16, 4079–4099, doi:10.5194/hess-16-4079-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2221 555 145
PDF Downloads 1056 264 31