Representation of Snow in the Canadian Seasonal to Interannual Prediction System. Part I: Initialization

Reinel Sospedra-Alfonso Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Reinel Sospedra-Alfonso in
Current site
Google Scholar
PubMed
Close
,
Lawrence Mudryk Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Lawrence Mudryk in
Current site
Google Scholar
PubMed
Close
,
William Merryfield Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by William Merryfield in
Current site
Google Scholar
PubMed
Close
, and
Chris Derksen Environment Canada, Toronto, Ontario, Canada

Search for other papers by Chris Derksen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ability of the Canadian Seasonal to Interannual Prediction System (CanSIPS) to provide realistic forecast initial conditions for snow cover is assessed using in situ measurements and gridded snow analyses. Forecast initial conditions for snow in CanCM3 and CanCM4 employed by CanSIPS are determined by the response of the Canadian Land Surface Scheme (CLASS) used in both models to forcing from model atmospheric fields constrained by assimilation of 6-hourly reanalysis data. These snow initial conditions are found to be representative of the daily climatology of snow water equivalent (SWE) as well as interannual variations in maximum SWE and the timing of snow onset and snowmelt observed at eight in situ measurement sites located across Canada. The level of this agreement is similar to that of three independent gridded snow analyses (MERRA, the European Space Agency’s GlobSnow, and an offline forced version of CLASS). Total Northern Hemisphere snow mass generated by the CanSIPS initialization procedure is larger for both models (especially CanCM3) than in MERRA, mostly because of higher SWE in regions of common snow cover. Globally, the interannual variability of initial SWE is found to correlate highly with that of MERRA in locations with appreciable snow. These initial values are compared to SWE in freely running CanCM3 and CanCM4 simulations produced without data assimilation of atmospheric fields. Differences in climatological SWE relative to MERRA are similar in the freely running and assimilating CanCM3 and CanCM4 simulations, suggesting that inherent model biases are a major contributor to biases in CanSIPS snow initial conditions.

Denotes Open Access content.

Corresponding author address: Reinel Sospedra-Alfonso, Canadian Centre for Climate Modelling and Analysis, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada. E-mail: sospedra@uvic.ca

Abstract

The ability of the Canadian Seasonal to Interannual Prediction System (CanSIPS) to provide realistic forecast initial conditions for snow cover is assessed using in situ measurements and gridded snow analyses. Forecast initial conditions for snow in CanCM3 and CanCM4 employed by CanSIPS are determined by the response of the Canadian Land Surface Scheme (CLASS) used in both models to forcing from model atmospheric fields constrained by assimilation of 6-hourly reanalysis data. These snow initial conditions are found to be representative of the daily climatology of snow water equivalent (SWE) as well as interannual variations in maximum SWE and the timing of snow onset and snowmelt observed at eight in situ measurement sites located across Canada. The level of this agreement is similar to that of three independent gridded snow analyses (MERRA, the European Space Agency’s GlobSnow, and an offline forced version of CLASS). Total Northern Hemisphere snow mass generated by the CanSIPS initialization procedure is larger for both models (especially CanCM3) than in MERRA, mostly because of higher SWE in regions of common snow cover. Globally, the interannual variability of initial SWE is found to correlate highly with that of MERRA in locations with appreciable snow. These initial values are compared to SWE in freely running CanCM3 and CanCM4 simulations produced without data assimilation of atmospheric fields. Differences in climatological SWE relative to MERRA are similar in the freely running and assimilating CanCM3 and CanCM4 simulations, suggesting that inherent model biases are a major contributor to biases in CanSIPS snow initial conditions.

Denotes Open Access content.

Corresponding author address: Reinel Sospedra-Alfonso, Canadian Centre for Climate Modelling and Analysis, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada. E-mail: sospedra@uvic.ca
Save
  • Bao, Z., Kelly R. , and Wu R. , 2011: Variability of regional snow cover in spring over western Canada and its relationship to temperature and circulation anomalies. Int. J. Climatol., 31, 12801294, doi:10.1002/joc.2155.

    • Search Google Scholar
    • Export Citation
  • Barnett, T., Adam J. , and Lettenmaier D. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Bartlett, P. A., MacKay M. D. , and Verseghy D. L. , 2006: Modified snow algorithms in the Canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmos.–Ocean, 44, 207222, doi:10.3137/ao.440301.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Brown R. , Mailhot J. , Bilodeau B. , and Crevier L. P. , 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, A. A., Famiglietti J. S. , Rodell M. , Reichle R. H. , Jambor U. , Holl S. L. , and Houser P. R. , 2005: Development of a hydrometeorological forcing data set for global soil moisture estimation. Int. J. Climatol., 25, 16971714, doi:10.1002/joc.1203.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Lambert S. J. , 2001: Second-order space–time climate difference statistics. Climate Dyn., 17, 213218, doi:10.1007/PL00013735.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and Mote P. W. , 2009: The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22, 21242145, doi:10.1175/2008JCLI2665.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and Derksen C. , 2013: Is Eurasian October snow cover extent increasing? Environ. Res. Lett.,8, 024006, doi:10.1088/1748-9326/8/2/024006.

  • Brown, R. D., Brasnett B. , and Robinson D. , 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41, 114, doi:10.3137/ao.410101.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., Bartlett P. , MacKay M. , and Verseghy D. , 2006: Evaluation of snow cover in class for SnowMIP. Atmos.–Ocean, 44, 223238, doi:10.3137/ao.440302.

    • Search Google Scholar
    • Export Citation
  • Che, T., Li X. , and Armstrong R. L. , 2003: Estimation of snow water equivalent from passive microwave remote sensing data (SSM/I) in Tibetan Plateau. Microwave Remote Sensing of the Atmosphere and Environment III, C. D. Kummerow, J.-S. Jiang, and S. Uratuka, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4894), 405412.

  • Cohen, J., Furtado J. C. , Jones J. , Barlow M. , Whittleston D. , and Entekhabi D. , 2014: Linking Siberian snow cover to precursors of stratospheric variability. J. Climate, 27, 54225432, doi:10.1175/JCLI-D-13-00779.1.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2002: Influence of soil moisture on the Asian and African monsoons. Part II: Interannual variability. J. Climate, 15, 701720, doi:10.1175/1520-0442(2002)015<0701:IOSMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drewitt, G., Berg A. A. , Merryfield W. J. , and Lee W.-S. , 2012: Effect of realistic soil moisture initialization on the Canadian CanCM3 seasonal forecast model. Atmos.–Ocean, 50, 466474, doi:10.1080/07055900.2012.722910.

    • Search Google Scholar
    • Export Citation
  • Etchevers, P., and Coauthors, 2002: SnowMIP—An intercomparison of snow models: First results. Proc. 2002 Int. Snow Science Workshop, Penticton, BC, Canada, ISSW, 353–360.

  • Fierz, C., and Coauthors, 2009: The international classification for seasonal snow on the ground. IHP-VII Tech. Doc. in Hydrology 83, IACS Contribution 1, UNESCO-IHP, 80 pp.

  • Fletcher, C. G., Hardiman S. C. , Kushner P. J. , and Cohen J. , 2009: The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Climate, 22, 12081222, doi:10.1175/2008JCLI2505.1.

    • Search Google Scholar
    • Export Citation
  • Frei, A., Tedesco M. , Lee S. , Foster J. , Hall D. K. , Kelly R. , and Robinson D. A. , 2012: A review of global satellite-derived snow products. Adv. Space Res., 50, 10071029, doi:10.1016/j.asr.2011.12.021.

    • Search Google Scholar
    • Export Citation
  • Gong, G., Entekhabi D. , Cohen J. , and Robinson D. , 2004: Sensitivity of atmospheric response to modeled snow anomaly characteristics. J. Geophys. Res.,109, D06107, doi:10.1029/2003JD004160.

  • Hancock, S., Baxter R. , Evans J. , and Huntley B. , 2013: Evaluating global snow water equivalent products for testing land surface models. Remote Sens. Environ., 128, 107117, doi:10.1016/j.rse.2012.10.004.

    • Search Google Scholar
    • Export Citation
  • Hedstrom, N., and Pomeroy J. , 1998: Measurements and modelling of snow interception in the boreal forest. Hydrol. Processes, 12, 16111625.

    • Search Google Scholar
    • Export Citation
  • Jakobson, E., Vihma T. , Palo T. , Jakobson L. , Keernik H. , and Jaagus J. , 2012: Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett.,39, L10802, doi:10.1029/2012GL051591.

  • Jeong, J.-H., Linderholm H. W. , Woo S.-H. , Folland C. , Kim B.-M. , Kim S.-J. , and Chen D. , 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 19561972, doi:10.1175/JCLI-D-12-00159.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Schubert S. D. , and Suarez M. J. , 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, doi:10.1175/2008JCLI2718.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett.,37, L02402, doi:10.1029/2009GL041677.

  • Lehr, C., Ward P. J. , and Kummu M. , 2012: Impact of large-scale climatic oscillations on snowfall-related climate parameters in the world’s major downhill ski areas: A review. Mt. Res. Dev., 32, 431445, doi:10.1659/MRD-JOURNAL-D-12-00062.1.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., Wensnahan M. , Schweiger A. , and Zhang J. , 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17, 13811397, doi:10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Hiemstra C. A. , 2011: The changing cryosphere: Pan-Arctic snow trends (1979–2009). J. Climate, 24, 56915712, doi:10.1175/JCLI-D-11-00081.1.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., Scinocca J. F. , Lazare M. , Harvey R. , Verseghy D. , and Li J. , 2005: The CCCma Third Generation Atmospheric General Circulation Model (AGCM2). Internal Rep., CCCma, Victoria, BC, Canada, 25 pp. [Available online at www.cccma.ec.gc.ca/papers/jscinocca/AGCM3_report.pdf.]

  • Merryfield, W. J., Lee W.-S. , Boer G. J. , Kharin V. V. , Scinocca J. F. , Flato G. M. , Ajayamohan R. S. , and Fyfe J. C. , 2013: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, doi:10.1175/MWR-D-12-00216.1.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., Senan R. , Balsamo G. , Doblas-Reyes F. J. , Vitart F. , Weisheimer A. , Carrasco A. , and Benestad R. E. , 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 19691982, doi:10.1007/s00382-013-1782-0.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., Douville H. , Alkama R. , and Decharme B. , 2011: Snow contribution to springtime atmospheric predictability over the second half of the twentieth century. Climate Dyn., 37, 9851004, doi:10.1007/s00382-010-0884-1.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., Saint-Martin D. , and Douville H. , 2012: A numerical sensitivity study of the influence of Siberian snow on the northern annular mode. J. Climate, 25, 592607, doi:10.1175/JCLI-D-11-00038.1.

    • Search Google Scholar
    • Export Citation
  • Poli, P., Healy S. B. , and Dee D. P. , 2010: Assimilation of Global Positioning System radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 19721990, doi:10.1002/qj.722.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and Gray D. M. , 1995: Snow Accumulation, Relocation and Management. National Hydrology Research Institute Science Rep. 7, Environment Canada, 144 pp.

  • Pu, Z., Xu L. , and Salomonson V. V. , 2007: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett.,34, L06706, doi:10.1029/2007GL029262.

  • Reichle, R. H., 2012: The MERRA-Land data product. GMAO Office Note 3 (version 1.2), NASA, 38 pp.

  • Reichle, R. H., Koster R. , De Lannoy G. , Forman B. , Liu Q. , Mahanam S. , and Toure A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res.,114, D06111, doi:10.1029/2008JD011063.

  • Scinocca, J. F., McFarlane N. , Lazare M. , and Li J. , 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074, doi:10.5194/acp-8-7055-2008.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Barrett A. P. , and Stroeve J. , 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res.,117, D10104, doi:10.1029/2011JD017421.

  • Shongwe, M. E., Ferro C. A. T. , Coelho C. A. S. , and van Oldenborgh G. J. , 2007: Predictability of cold spring seasons in Europe. Mon. Wea. Rev., 135, 41854201, doi:10.1175/2007MWR2094.1.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., Ducharne A. , Koster R. , and Suarez M. , 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2, 228242, doi:10.1175/1525-7541(2001)002<0228:TIODSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takala, M., Pulliainen J. , Metsämäki S. , and Koskinen J. , 2009: Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. IEEE Trans. Geosci. Remote Sens., 47, 29963007, doi:10.1109/TGRS.2009.2018442.

    • Search Google Scholar
    • Export Citation
  • Takala, M., Luojus K. , Pulliainen J. , Derksen C. , Lemmetyinen J. , Karna J.-P. , Koskinen J. , and Bojkov B. , 2011: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 35173529, doi:10.1016/j.rse.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. K., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Tong, J., Déry S. J. , Jackson P. L. , and Derksen C. , 2010: Testing snow water equivalent retrieval algorithms for passive microwave remote sensing in an alpine watershed of western Canada. Can. J. Rem. Sens., 36, S74S86, doi:10.5589/m10-009.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 2000: The Canadian land surface scheme (CLASS): Its history and future. Atmos.–Ocean, 38, 113, doi:10.1080/07055900.2000.9649637.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and Coauthors, 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and Lettenmaier D. P. , 2008: An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett.,35, L14401, doi:10.1029/2008GL034648.

  • Yang, F., Kumar A. , Wang W. , Juang H.-M. H. , and Kanamitsu M. , 2001: Snow albedo feedback and seasonal climate variability over North America. J. Climate, 14, 42454248, doi:10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Kumar A. , and Wang W. , 2012: Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR). J. Geophys. Res.,117, D08105, doi:10.1029/2011JD017347.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 62 10
PDF Downloads 133 55 17