A Thermodynamically Based Model for Actual Evapotranspiration of an Extensive Grass Field Close to FAO Reference, Suitable for Remote Sensing Application

H. A. R. de Bruin Meteorology and Air Quality, Wageningen University, Wageningen, Netherlands

Search for other papers by H. A. R. de Bruin in
Current site
Google Scholar
PubMed
Close
,
I. F. Trigo Instituto Dom Luiz, University of Lisbon, and Instituto Português do Mar e da Atmosfera, Lisbon, Portugal

Search for other papers by I. F. Trigo in
Current site
Google Scholar
PubMed
Close
,
F. C. Bosveld Royal Netherlands Meteorology Institute (KNMI), De Bilt, Netherlands

Search for other papers by F. C. Bosveld in
Current site
Google Scholar
PubMed
Close
, and
J. F. Meirink Royal Netherlands Meteorology Institute (KNMI), De Bilt, Netherlands

Search for other papers by J. F. Meirink in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A thermodynamically based model is presented to estimate daily actual evapotranspiration (ET) of a grass site closely resembling reference grass as defined by the Food and Agriculture Organization of the United Nations (FAO) under nonadvective conditions, from Meteosat Second Generation (MSG) imagery. The model presented here is derived from the thermodynamic theory by Schmidt combined with an atmospheric boundary layer model. Daily net radiation over the (reference) grass surface is parameterized as a function of global radiation, which can be estimated from MSG observations. It is then shown that ET over the grass area can be estimated using remotely sensed daily global radiation and air temperature as input only. The validation relied on observations gathered in Cabauw, a site closely resembling the reference grass, as defined by the FAO. The comparison with in situ data indicated a bias of 2.8 W m−2 and an RMSE of 7.7 W m−2. The possibility of using the approach developed here to provide reference crop evapotranspiration ETo is discussed. Because of the ambiguousness of ETo definition regarding local advection effects, it should be noted that explicitly advection-free conditions are dealt with. It is pointed out that in semiarid regions local advection cannot be ignored.

Corresponding author address: F. C. Bosveld, Royal Netherlands Meteorology Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, Netherlands. E-mail: fred.bosveld@knmi.nl

Abstract

A thermodynamically based model is presented to estimate daily actual evapotranspiration (ET) of a grass site closely resembling reference grass as defined by the Food and Agriculture Organization of the United Nations (FAO) under nonadvective conditions, from Meteosat Second Generation (MSG) imagery. The model presented here is derived from the thermodynamic theory by Schmidt combined with an atmospheric boundary layer model. Daily net radiation over the (reference) grass surface is parameterized as a function of global radiation, which can be estimated from MSG observations. It is then shown that ET over the grass area can be estimated using remotely sensed daily global radiation and air temperature as input only. The validation relied on observations gathered in Cabauw, a site closely resembling the reference grass, as defined by the FAO. The comparison with in situ data indicated a bias of 2.8 W m−2 and an RMSE of 7.7 W m−2. The possibility of using the approach developed here to provide reference crop evapotranspiration ETo is discussed. Because of the ambiguousness of ETo definition regarding local advection effects, it should be noted that explicitly advection-free conditions are dealt with. It is pointed out that in semiarid regions local advection cannot be ignored.

Corresponding author address: F. C. Bosveld, Royal Netherlands Meteorology Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, Netherlands. E-mail: fred.bosveld@knmi.nl
Save
  • Allen, R. G., Pereira L. S. , Raes D. , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Allen, R. G., and Coauthors, 2006: A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman–Monteith method. Agric. Water Manage., 81, 122, doi:10.1016/j.agwat.2005.03.007.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and Bosveld F. C. , 1997: Cabauw data for the validation of land surface parameterization schemes. J. Climate, 10, 11721193, doi:10.1175/1520-0442(1997)010<1172:CDFTVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berengena, J., and Gavilán P. , 2005: Reference evapotranspiration estimation in a highly advective semiarid environment. J. Irrig. Drain. Eng., 131, 147163, doi:10.1061/(ASCE)0733-9437(2005)131:2(147).

    • Search Google Scholar
    • Export Citation
  • Bois, B., Pieria P. , van Leeuwen C. , Wald L. , Huard F. , Gaudillere J.-P. , and Saur E. , 2008: Using remotely sensed solar radiation data for reference evapotranspiration estimation at a daily time step. Agric. For. Meteor., 148, 619630, doi:10.1016/j.agrformet.2007.11.005.

    • Search Google Scholar
    • Export Citation
  • Cammalleri, C., and Ciraolo G. , 2013: A simple method to directly retrieve reference evapotranspiration from geostationary satellite images. Int. J. Appl. Earth Obs. Geoinf., 21, 149158, doi:10.1016/j.jag.2012.08.008.

    • Search Google Scholar
    • Export Citation
  • Carrer, D., Lafont S. , Roujean J.-L. , Calvet J.-C. , Meurey C. , Le Moigne P. , and Trigo I. F. , 2012: Incoming solar and infrared radiation derived from METEOSAT: Impact on the modeled land water and energy budget over France. J. Hydrometeor., 13, 504520, doi:10.1175/JHM-D-11-059.1.

    • Search Google Scholar
    • Export Citation
  • CESAR Consortium, 2013: Datasets cesar_surface_meteo_lc1_t10_v10 and cesar_surface_flux_lc1_t10_v10. Subset used 2007–2012, accessed 2013. [Available online at http://www.cesar-database.nl/.]

  • Choudhury, B. J., and de Bruin H. A. R. , 1995: First order approach for estimation unstressed transpiration from meteorological satellite data. Adv. Space Res., 16, 167176, doi:10.1016/0273-1177(95)00398-X.

    • Search Google Scholar
    • Export Citation
  • de Bruin, H. A. R., 1983: A model for the Priestley–Taylor parameter α. J. Appl. Meteor., 22, 572578, doi:10.1175/1520-0450(1983)022<0572:AMFTPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Bruin, H. A. R., 1987: From Penman to Makkink. Proceedings and Information: TNO Committee on Hydrological Research No. 39, J. C. Hooghart, Ed., Netherlands Organization for Applied Scientific Research, 5–30.

  • de Bruin, H. A. R., and Holtslag A. A. M. , 1982: A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman–Monteith concept. J. Appl. Meteor., 21, 16101621, doi:10.1175/1520-0450(1982)021<1610:ASPOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Bruin, H. A. R., and Stricker J. N. M. , 2000: Evaporation of grass under non-restricted soil moisture conditions. Hydrol. Sci. J., 45, 391406, doi:10.1080/02626660009492337.

    • Search Google Scholar
    • Export Citation
  • de Bruin, H. A. R., Trigo I. F. , Jitan M. A. , Temesgen Enku N. , van der Tol C. , and Gieske A. S. M. , 2010: Reference crop evapotranspiration derived from geo-stationary satellite imagery. A case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan. Hydrol. Earth Syst. Sci., 14, 22192228, doi:10.5194/hess-14-2219-2010.

    • Search Google Scholar
    • Export Citation
  • de Bruin, H. A. R., Trigo I. F. , Galivan P. , Martinez A. , and Gonzales M. P. , 2012: Reference crop evapotranspiration estimated from geostationary satellite imagery. IAHS Publ., 352, 111114.

    • Search Google Scholar
    • Export Citation
  • Deneke, H. M., Feijt A. J. , and Roebeling R. A. , 2008: Estimating surface solar irradiance from METEOSAT SEVIRI-derived cloud properties. Remote Sens. Environ., 112, 31313141, doi:10.1016/j.rse.2008.03.012.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Holtslag A. A. M. , 1999: Estimation of surface radiation and energy flux densities from single-level weather. J. Appl. Meteor., 38, 526540, doi:10.1175/1520-0450(1999)038<0526:EOSRAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 1992: Physical Hydrology. Prentice Hall, 575 pp.

  • Dong, A., Grattan S. , Carroll J. , and Prashar C. , 1992: Estimation of daytime net radiation over well-watered grass. J. Irrig. Drain. Eng., 118, 466479, doi:10.1061/(ASCE)0733-9437(1992)118:3(466).

    • Search Google Scholar
    • Export Citation
  • Doorenbos, J., and Pruitt W. O. , 1975: Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper 24, Food and Agriculture Organization, 179 pp. [Available online at http://www.fao.org/3/a-f2430e.pdf.]

  • Ek, M. B., and Holtslag A. A. M. , 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geiger, B., Meurey C. , Lajas D. , Franchistéguy L. , Carrer D. , and Roujean J.-L. , 2008: Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteor. Appl., 15, 411420, doi:10.1002/met.84.

    • Search Google Scholar
    • Export Citation
  • Greuell, W., Meirink J. F. , and Wang P. , 2013: Retrieval and validation of global, direct, and diffuse irradiance derived from SEVIRI satellite observations. J. Geophys. Res. Atmos., 118, 23402361, doi:10.1002/jgrd.50194.

    • Search Google Scholar
    • Export Citation
  • Hart, Q., Brugnach M. , Temesgen B. , Rueda C. , Ustin S. , and Frame K. , 2009: Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation. Civ. Eng. Environ. Syst., 26, 1933, doi:10.1080/10286600802003500.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and van Ulden A. P. , 1983: A simple scheme for daytime estimates of the surface fluxes from routine weather data. Climate Appl. Meteor., 22, 517529, doi:10.1175/1520-0450(1983)022<0517:ASSFDE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, G., Jia L. , and Menenti M. , 2015: Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens. Environ., 156, 510526, doi:10.1016/j.rse.2014.10.017.

    • Search Google Scholar
    • Export Citation
  • Ineichen, P., Barroso C. , Geiger B. , Hollmann R. , Marsouin A. , and Mueller R. , 2009: Satellite application facilities irradiance products: Hourly time step comparison and validation over Europe. Int. J. Remote Sens., 30, 55495571, doi:10.1080/01431160802680560.

    • Search Google Scholar
    • Export Citation
  • Jacobs, C. M. J., and de Bruin H. A. R. , 1992: The sensitivity of regional transpiration to land-surface characteristics: Significance of feedback. J. Climate, 5, 683698, doi:10.1175/1520-0442(1992)005<0683:TSORTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katerji, N., and Rana G. , 2011: Crop reference evapotranspiration: A discussion of the concept, analysis of the process and validation. Water Resour. Manage., 25, 15811600, doi:10.1007/s11269-010-9762-1.

    • Search Google Scholar
    • Export Citation
  • Katerji, N., and Rana G. , 2014: FAO-56 methodology for determining water requirement of irrigated crops: Critical examination of the concepts, alternative proposals and validation in Mediterranean region. Theor. Appl. Climatol., 116, 515536, doi:10.1007/s00704-013-0972-3.

    • Search Google Scholar
    • Export Citation
  • Kleidon, A., and Renner M. , 2013: Thermodynamic limits of hydrologic cycling within the Earth system: Concepts, estimates and implications. Hydrol. Earth Syst. Sci., 17, 28732892, doi:10.5194/hess-17-2873-2013.

    • Search Google Scholar
    • Export Citation
  • Kleidon, A., Renner M. , and Porada P. , 2014: Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrol. Earth Syst. Sci., 18, 22012218, doi:10.5194/hess-18-2201-2014.

    • Search Google Scholar
    • Export Citation
  • Kohsiek, W., Meijninger W. M. L. , Moene A. F. , Heusinkveld B. G. , Hartogensis O. K. , Hillen W. C. A. M. , and De Bruin H. A. R. , 2002: An extra large aperture scintillometer for long range applications. Bound.-Layer Meteor., 105, 119127, doi:10.1023/A:1019600908144.

    • Search Google Scholar
    • Export Citation
  • McMahon, T. A., Peel M. C. , Lowe L. , Srikanthan R. , and McVicar T. R. , 2013: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci., 17, 13311363, doi:10.5194/hess-17-1331-2013.

    • Search Google Scholar
    • Export Citation
  • McNaughton, K. G., and Spriggs T. W. , 1986: A mixed-layer model for regional evaporation. Bound.-Layer Meteor., 34, 243262, doi:10.1007/BF00122381.

    • Search Google Scholar
    • Export Citation
  • Monna, W., and Bosveld F. , 2013: In higher spheres: 40 years of observations at the Cabauw Site. KNMI-Publication 232, KNMI, 56 pp. [Available online at http://www.cesar-observatory.nl/publications/reports/knmipub232.pdf.]

  • Oudin, L., Hervieu F. , Michel C. , Perrin C. , Andreassian V. , Anctil F. , and Loumagne C. , 2005: Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol., 303, 290306, doi:10.1016/j.jhydrol.2004.08.026.

    • Search Google Scholar
    • Export Citation
  • Ouwersloot, H. G., and Vilà-Guerau de Arellano J. , 2013: Analytical solution for the convectively-mixed atmospheric boundary layer. Bound.-Layer Meteor., 148, 557583, doi:10.1007/s10546-013-9816-z.

    • Search Google Scholar
    • Export Citation
  • Pechinger, U., Erbes G. , Johansson P.-E. , Karppinen A. , Musson-Genon L. , Omstedt G. , and Tercier Ph. , 1997: Surface energy balance. Cost Action 710—Final report: Harmonization of pre-processing of meteorological data for atmospheric dispersion models, European Commission, EUR 18195 EN, 3–94.

  • Pielke, R. A., Sr., 2013: Mesoscale Meteorological Modeling. 3rd ed., Academic Press, 720 pp.

  • Raupach, M. R., 2001: Combination theory and equilibrium evaporation. Quart. J. Roy. Meteor. Soc., 127, 11491181, doi:10.1002/qj.49712757402.

    • Search Google Scholar
    • Export Citation
  • Schmidt, W., 1915: Strahlung und Verdunstung an freien Wasserflächen; ein Beitrag zum Wärmehaushalt des Weltmeers und zum Wasserhaushalt der Erde (Radiation and evaporation over open water surfaces; a contribution to the heat budget of the world ocean and to the water budget of the earth). Ann. Hydro. Maritimen Meteor., 43, 111–124, 169–178.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Wood E. F. , and Roderick M. L. , 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, doi:10.1038/nature11575.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., and Coauthors, 2011: The satellite application facility on land surface analysis. Int. J. Remote Sens., 32, 27252744, doi:10.1080/01431161003743199.

    • Search Google Scholar
    • Export Citation
  • Valentini, R., 2003: EUROFLUX: An integrated network for studying the long-term responses of biosphere exchanges of carbon, water, and energy of European forests. Fluxes of Carbon, Water and Energy of European Forests, R. Valentini, Ed., Ecological Studies, Vol. 163, Springer, 18, doi:10.1007/978-3-662-05171-9_1.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M., Viterbo P. , and Beljaars A. C. M. , and Betts A. K. , 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech Memo. 295, ECMWF, 42 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2000/12900-offline-validation-era40-surface-scheme.pdf.]

  • van der Schrier, G., Briffa K. R. , Jones P. D. , and Osborn T. J. , 2006: Summer moisture variability across Europe. J. Climate, 19, 28182834, doi:10.1175/JCLI3734.1.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., Vilà-Guerau de Arellano J. , Gounou A. , Guichard F. , and Couvreux F. , 2010: Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcings and feedbacks. J. Hydrometeor., 11, 14051422, doi:10.1175/2010JHM1272.1.

    • Search Google Scholar
    • Export Citation
  • van Ulden, A. P., and Holtslag A. A. M. , 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor., 24, 11961207, doi:10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 656 228 31
PDF Downloads 456 133 17