Impact of Soil Moisture Initialization and Soil Texture on Simulated Land–Atmosphere Interaction in Taiwan

Tzu-Shun Lin Department of Atmospheric Sciences, National Central University, Taiwan

Search for other papers by Tzu-Shun Lin in
Current site
Google Scholar
PubMed
Close
and
Fang-Yi Cheng Department of Atmospheric Sciences, National Central University, Taiwan

Search for other papers by Fang-Yi Cheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the effect of soil moisture initializations and soil texture on the land surface hydrologic processes and its feedback on atmospheric fields in Taiwan. The simulations using the Weather Research and Forecasting (WRF) Model with the Noah land surface model were conducted for a 1-month period from 10 August to 12 September 2013 that included two typhoon-induced precipitation episodes and a series of clear-sky days. Soil moisture from the Global Land Data Assimilation System (GLDAS) was utilized to provide the soil moisture initialization process. In addition, updated soil textures based on field surveys in Taiwan were adopted for the WRF Model. Three WRF sensitivity runs were performed. The first simulation is the base case without any update (WRF-base), the second simulation utilizes GLDAS products to initialize the soil moisture (WRF-GLDAS), and the third simulation includes GLDAS products plus the updated soil textures and soil parameters (WRF-GSOIL). In WRF-base, the soil moisture initialization process is provided from National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data, which are higher than the data from GLDAS products. The WRF-GLDAS and WRF-GSOIL with use of GLDAS data show lower soil moisture than WRF-base and agree better with observed data, while WRF-base shows a systematic wet bias of soil moisture throughout the simulation periods. In WRF-GSOIL, the soil textures with large-sized soil particles reveal higher soil conductivity; as a result, water drains through the soil column in a faster manner than the WRF-GLDAS, which leads to reduced soil moisture in western Taiwan. Among the three simulations, the variation of soil moisture is best simulated in WRF-GSOIL.

Corresponding author address: Fang-Yi Cheng, Department of Atmospheric Sciences, National Central University, No. 300, Chun-Da Rd., Zhongli Dist., Taoyuan City 32001, Taiwan. E-mail: bonniecheng18@gmail.com

Abstract

This study investigates the effect of soil moisture initializations and soil texture on the land surface hydrologic processes and its feedback on atmospheric fields in Taiwan. The simulations using the Weather Research and Forecasting (WRF) Model with the Noah land surface model were conducted for a 1-month period from 10 August to 12 September 2013 that included two typhoon-induced precipitation episodes and a series of clear-sky days. Soil moisture from the Global Land Data Assimilation System (GLDAS) was utilized to provide the soil moisture initialization process. In addition, updated soil textures based on field surveys in Taiwan were adopted for the WRF Model. Three WRF sensitivity runs were performed. The first simulation is the base case without any update (WRF-base), the second simulation utilizes GLDAS products to initialize the soil moisture (WRF-GLDAS), and the third simulation includes GLDAS products plus the updated soil textures and soil parameters (WRF-GSOIL). In WRF-base, the soil moisture initialization process is provided from National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data, which are higher than the data from GLDAS products. The WRF-GLDAS and WRF-GSOIL with use of GLDAS data show lower soil moisture than WRF-base and agree better with observed data, while WRF-base shows a systematic wet bias of soil moisture throughout the simulation periods. In WRF-GSOIL, the soil textures with large-sized soil particles reveal higher soil conductivity; as a result, water drains through the soil column in a faster manner than the WRF-GLDAS, which leads to reduced soil moisture in western Taiwan. Among the three simulations, the variation of soil moisture is best simulated in WRF-GSOIL.

Corresponding author address: Fang-Yi Cheng, Department of Atmospheric Sciences, National Central University, No. 300, Chun-Da Rd., Zhongli Dist., Taoyuan City 32001, Taiwan. E-mail: bonniecheng18@gmail.com
Save
  • Cassardo, C., Park S. K. , Thakuri B. M. , Priolo D. , and Zhang Y. , 2009: Soil surface energy and water budgets during a monsoon season in Korea. J. Hydrometeor., 10, 13791396, doi:10.1175/2009JHM1101.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land-surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, doi:10.1029/95JD02165.

    • Search Google Scholar
    • Export Citation
  • Cheng, F.-Y., Hsu Y. C. , Lin P. L. , and Lin T. H. , 2013: Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J. Appl. Meteor. Climatol, 52, 570587, doi:10.1175/JAMC-D-12-0109.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, F.-Y., Jian S.-P. , Yang Z.-M. , Tsuang B.-J. , and Yen M.-C. , 2015: Impact of regional climate changes on meteorological characteristics and their subsequent effect on ozone dispersion in Taiwan. Atmos. Environ., 103, 6681, doi:10.1016/j.atmosenv.2014.12.020.

    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., Hornberger G. M. , Clapp R. B. , and Ginn T. R. , 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690, doi:10.1029/WR020i006p00682.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model (CLM). Bull. Amer. Meteor. Soc., 84, 10131023, doi:10.1175/BAMS-84-8-1013.

  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, doi:10.1175/BAMS-87-10-1381.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., and Coauthors, 2008: Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River basin, northwest China. J. Geophys. Res., 113, D20S90, doi:10.1029/2008JD010359.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Yu W. , and Yates D. N. , 2013: The WRF-Hydro Model technical description and user's guide, version 1.0. NCAR Tech. Doc., 120 pp. [Available online at https://www.ral.ucar.edu/projects/wrf_hydro.]

  • Hansen, M. C., DeFries R. S. , Townshend J. R. G. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, doi:10.1080/014311600210209.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., Brockhaus P. , Christopher S. , and Schär C. , 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, doi:10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S. B., Lakshmi V. , Small E. E. , Chen F. , Tewari M. , and Manning K. W. , 2009: Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model. J. Geophys. Res., 114, D18118, doi:10.1029/2008JD011249.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Dudhia J. , and Chen S.-H. , 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hung, Y.-C., Hong J.-S. , Tsay C.-L. , Barlage M. , and Chen F. , 2014: Evaluation of the High Resolution Land Data Assimilation System [in Chinese]. Atmos. Sci., 42, 2947.

    • Search Google Scholar
    • Export Citation
  • Husain, S. Z., Bélair S. , and Leroyer S. , 2014: Influence of soil moisture on urban microclimate and surface-layer meteorology in Oklahoma City. J. Appl. Meteor. Climatol., 53, 8398, doi:10.1175/JAMC-D-13-0156.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., Delamere J. S. , Mlawer E. J. , Shephard M. W. , Clough S. A. , and Collins W. D. , 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., Dudhia J. , González-Rouco J. F. , Navarro J. , Montávez J. P. , and García-Bustamante E. , 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The representation of cumulus convection in numerical models. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Koren, V., Schaake J. , Mitchell K. , Duan Q.-Y. , and Chen F. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, doi:10.1029/1999JD900232.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97, 26972715, doi:10.1029/91JD01696.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.]

  • Koster, R. D., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Schubert S. D. , and Suarez M. J. , 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, doi:10.1175/2008JCLI2718.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., Chen F. , Barlage M. , Ek M. B. , and Niyogi D. , 2014: Assessing impacts of integrating MODIS vegetation data in the Weather Research and Forecasting (WRF) Model coupled to two different canopy-resistance approaches. J. Appl. Meteor. Climatol, 53, 13621380, doi:10.1175/JAMC-D-13-0247.1.

    • Search Google Scholar
    • Export Citation
  • Lam, J. S. L., Lau A. K. H. , and Fung J. C. H. , 2006: Application of refined land-use categories for high resolution mesoscale atmospheric modeling. Bound.-Layer Meteor., 119, 263288, doi:10.1007/s10546-005-9027-3.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., Chen F. , Alfieri J. G. , Tewari M. , Geerts B. , Miao Q. , Grossman R. L. , and Coulter R. L. , 2007: Influence of land cover and soil moisture on the horizontal distribution of sensible and latent heat fluxes in southeast Kansas during IHOP_2002 and CASES-97. J. Hydrometeor., 8, 6887, doi:10.1175/JHM554.1.

    • Search Google Scholar
    • Export Citation
  • Leung, K.-W., and Chen T.-T. , 1957: Soils of Taiwan. J. Agric. Assoc. China, 20, 125.

  • Li, D., Bou-Zeid E. , Barlage M. , Chen F. , and Smith J. A. , 2013: Development and evaluation of a mosaic approach in the WRF–Noah framework. J. Geophys. Res. Atmos., 118, 11 91811 935, doi:10.1002/2013JD020657.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101, 21 40321 422, doi:10.1029/96JD01448.

    • Search Google Scholar
    • Export Citation
  • Lin, T. S., and Cheng F. Y. , 2014: Effects of land surface hydrological processes on soil moisture and its coupled impact on the meteorological characteristics. 11th Annual Meeting of the Asia Oceania Geosciences Society, Sapporo, Japan, AOGS, HS08-A011.

  • Mahanama, S. P. P., Koster R. D. , Reichle R. H. , and Zubair L. , 2008: The role of soil moisture initialization in subseasonal and seasonal streamflow predictability: A case study in Sri Lanka. Adv. Water Resour., 31, 13331343, doi:10.1016/j.advwatres.2008.06.004.

    • Search Google Scholar
    • Export Citation
  • Meng, L., and Shen Y. J. , 2014: On the relationship of soil moisture and extreme temperatures in east China. Earth Interact., 18, doi:10.1175/2013EI000551.1.

    • Search Google Scholar
    • Export Citation
  • Meng, L., Long D. , Quiring S. M. , and Shen Y. J. , 2014: Statistical analysis of the relationship between spring soil moisture and summer precipitation in east China. Int. J. Climatol., 34, 15111523, doi:10.1002/joc.3780.

    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and White R. A. , 1998: A conterminous United States multilayer soil characteristics data set for regional climate and hydrology modeling. Earth Interact., 2, 126, doi:10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mostovoy, G. V., and Anantharaj V. G. , 2008: Observed and simulated soil moisture variability over the lower Mississippi Delta region. J. Hydrometeor., 9, 11251150, doi:10.1175/2008JHM999.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., Koster R. D. , Dong J. , and Berg A. , 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442, doi:10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., Jackson T. J. , and Rawls W. J. , 2000: Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour. Res., 36, 36533662, doi:10.1029/2000WR900130.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , and Kumar S. V. , 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, doi:10.1175/JHM-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Koren V. I. , Duan Q. Y. , Mitchell K. , and Chen F. , 1996: A simple water balance model (SWB) for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, doi:10.1029/95JD02892.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Seuffert, G., Gross P. , Simmer C. , and Wood E. , 2002: The influence of hydrologic modelling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J. Hydrometeor., 3, 505523, doi:10.1175/1525-7541(2002)003<0505:TIOHMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors., 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Sörensson, A. A., and Berbery E. H. , 2015: A note on soil moisture memory and interactions with surface climate for different vegetation types in the La Plata basin. J. Hydrometeor., 16, 716729, doi:10.1175/JHM-D-14-0102.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Chen F. , Manning K. W. , LeMone M. A. , and Davis C. A. , 2008: Sensitivity of the PBL and precipitation in 12-day simulations of warm-season convection using different land surface models and soil wetness conditions. Mon. Wea. Rev., 136, 23212343, doi:10.1175/2007MWR2289.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., LeMone M. A. , Chen F. , and Manning K. W. , 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 325, doi:10.1175/2010WAF2222426.1.

    • Search Google Scholar
    • Export Citation
  • Verdin, K. L., and Greenlee S. K. , 1996: Development of continental scale digital elevation models and extraction of hydrographic features. Proc. Third Int. Conf./Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM, National Center for Geographic Information and Analysis, CD-ROM, 8.2.

  • Vivoni, E. R., Tai K. , and Gohis D. J. , 2009: Effects of the initial soil moisture on rainfall generation and subsequent hydrologic response during the North American monsoon. J. Hydrometeor., 10, 644664, doi:10.1175/2008JHM1069.1.

    • Search Google Scholar
    • Export Citation
  • Warrach-Sagi, K., Wulfmeyer V. , Grasselt R. , Ament F. , and Simmer C. , 2008: Streamflow simulations reveal the impact of the soil parameterization. Meteor. Z., 17, 751762, doi:10.1127/0941-2948/2008/0343.

    • Search Google Scholar
    • Export Citation
  • Yang, S., Yoo S.-H. , Yang R. , Mitchell K. E. , van den Dool H. , and Higgins R. W. , 2007: Response of seasonal simulations of a regional climate model to high-frequency variability of soil moisture during the summers of 1988 and 1993. J. Hydrometeor., 8, 738757, doi:10.1175/JHM616.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., Uddstrom M. , Revell M. , Andrews P. , Oliver H. , Turner R. , and Carey-Smith T. , 2011: Numerical simulations of effects of soil moisture and modification by mountains over New Zealand in summer. Mon. Wea. Rev., 139, 494510, doi:10.1175/2010MWR3324.1.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., Santanello J. A. , Kumar S. V. , and Peters-Lidard C. D. , 2013: Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF). J. Hydrometeor., 14, 360367, doi:10.1175/JHM-D-12-069.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Wang Y. , Lauer A. , and Hamilton K. , 2012: Configuration and evaluation of the WRF Model for the study of Hawaiian regional climate. Mon. Wea. Rev., 140, 32593277, doi:10.1175/MWR-D-11-00260.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Wu L. , and Dong W. , 2011: Land–atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res., 116, D05117, doi:10.1029/2010JD014714.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1471 268 20
PDF Downloads 1270 234 20