Effects of Spatial Aggregation on the Accuracy of Statistically Downscaled Precipitation Predictions

Jérémy Chardon Université Grenoble Alpes, LTHE UMR 5564, and GINP/ENSE3, Grenoble, France

Search for other papers by Jérémy Chardon in
Current site
Google Scholar
PubMed
Close
,
Anne-Catherine Favre Université Grenoble Alpes, LTHE UMR 5564, and GINP/ENSE3, Grenoble, France

Search for other papers by Anne-Catherine Favre in
Current site
Google Scholar
PubMed
Close
, and
Benoît Hingray Université Grenoble Alpes, LTHE UMR 5564, Grenoble, France

Search for other papers by Benoît Hingray in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of spatial aggregation on the skill of downscaled precipitation predictions obtained over an 8 × 8 km2 grid from circulation analogs for metropolitan France are explored. The Safran precipitation reanalysis and an analog approach are used to downscale the precipitation where the predictors are taken from the 40-yr ECMWF Re-Analysis (ERA-40). Prediction skill—characterized by the continuous ranked probability score (CRPS), its skill score, and its decomposition—is generally found to continuously increase with spatial aggregation. The increase is also greater when the spatial correlation of precipitation is lower. This effect is shown from an empirical experiment carried out with a fully uncorrelated dataset, generated from a space-shake experiment, where the precipitation time series of each grid cell is randomly assigned to another grid cell. The underlying mechanisms of this effect are further highlighted with synthetic predictions simulated using a stochastic spatiotemporal generator. It is shown 1) that the skill increase with spatial aggregation jointly results from the higher and lower values obtained for the resolution and uncertainty terms of the CRPS decomposition, respectively, and 2) that the lower spatial correlation of precipitation is beneficial for both terms. Results obtained for France suggest that the prediction skill indefinitely increases with aggregation. A last experiment is finally proposed to show that this is not expected to be always the case. A prediction skill optimum is, for instance, obtained when the mean areal precipitation is estimated over a region where local precipitations of different grid cells originate from different underlying meteorological processes.

Corresponding author address: Anne-Catherine Favre, LTHE UMR 5564, Université Grenoble Alpes, CS 40700, F-38058 Grenoble CEDEX 9, France. E-mail: anne-catherine.favre-pugin@ense3.grenoble-inp.fr

Abstract

The effects of spatial aggregation on the skill of downscaled precipitation predictions obtained over an 8 × 8 km2 grid from circulation analogs for metropolitan France are explored. The Safran precipitation reanalysis and an analog approach are used to downscale the precipitation where the predictors are taken from the 40-yr ECMWF Re-Analysis (ERA-40). Prediction skill—characterized by the continuous ranked probability score (CRPS), its skill score, and its decomposition—is generally found to continuously increase with spatial aggregation. The increase is also greater when the spatial correlation of precipitation is lower. This effect is shown from an empirical experiment carried out with a fully uncorrelated dataset, generated from a space-shake experiment, where the precipitation time series of each grid cell is randomly assigned to another grid cell. The underlying mechanisms of this effect are further highlighted with synthetic predictions simulated using a stochastic spatiotemporal generator. It is shown 1) that the skill increase with spatial aggregation jointly results from the higher and lower values obtained for the resolution and uncertainty terms of the CRPS decomposition, respectively, and 2) that the lower spatial correlation of precipitation is beneficial for both terms. Results obtained for France suggest that the prediction skill indefinitely increases with aggregation. A last experiment is finally proposed to show that this is not expected to be always the case. A prediction skill optimum is, for instance, obtained when the mean areal precipitation is estimated over a region where local precipitations of different grid cells originate from different underlying meteorological processes.

Corresponding author address: Anne-Catherine Favre, LTHE UMR 5564, Université Grenoble Alpes, CS 40700, F-38058 Grenoble CEDEX 9, France. E-mail: anne-catherine.favre-pugin@ense3.grenoble-inp.fr
Save
  • Auffray, A., and Coauthors, 2011: Reconstructing the hydrometeorological scenario of the 1859 flood of the Isère River. Houille Blanche, 1, 4450, doi:10.1051/lhb/2011005.

    • Search Google Scholar
    • Export Citation
  • Ayar, P. V., Vrac M. , Bastin S. , Carreau J. , Déqué M. , and Gallardo C. , 2015: Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: Present climate evaluations. Climate Dyn., 46, 13011329, doi:10.1007/s00382-015-2647-5.

    • Search Google Scholar
    • Export Citation
  • Boé, J., Terray L. , Habets F. , and Martin E. , 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 16431655, doi:10.1002/joc.1602.

    • Search Google Scholar
    • Export Citation
  • Bontron, G., 2004: Prévision quantitative des précipitations: Adaptation probabiliste par recherche d’analogues. Ph.D. thesis, Institut National Polytechnique de Grenoble, 262 pp.

  • Bontron, G., and Obled C. , 2005: A probabilistic adaptation of meteorological model outputs to hydrological forecasting. Houille Blanche, 1, 2328, doi:10.1051/lhb:200501002.

    • Search Google Scholar
    • Export Citation
  • Brown, T. A., 1974: Admissible scoring systems for continuous distributions. Paper P-5235, The Rand Corporation, 28 pp. [Available from The Rand Corporation, 1700 Main St., Santa Monica, CA 90407-2138.]

  • Buishand, T. A., and Brandsma T. , 2001: Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling. Water Resour. Res., 37, 27612776, doi:10.1029/2001WR000291.

    • Search Google Scholar
    • Export Citation
  • Chardon, J., Hingray B. , Favre A.-C. , Autin P. , Gailhard J. , Zin I. , and Obled C. , 2014: Spatial similarity and transferability of analog dates for precipitation downscaling over France. J. Climate, 27, 50565074, doi:10.1175/JCLI-D-13-00464.1.

    • Search Google Scholar
    • Export Citation
  • Frost, A. J., and Coauthors, 2011: A comparison of multi-site daily rainfall downscaling techniques under Australian conditions. J. Hydrol., 408, 118, doi:10.1016/j.jhydrol.2011.06.021.

    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, S., Clark M. , Werner K. , Brandon D. , and Rajagopalan B. , 2004: Effects of spatial and temporal aggregation on the accuracy of statistically downscaled precipitation estimates in the upper Colorado River basin. J. Hydrometeor., 5, 11921206, doi:10.1175/JHM-391.1.

    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, S., Clark M. , and Rajagopalan B. , 2005: Statistical downscaling using K-nearest neighbors. Water Resour. Res., 41, W02024, doi:10.1029/2004WR003444.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., Raftery A. E. , Westveld A. H. , and Goldman T. , 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., Achberger C. , Benestad R. E. , Chen D. , and Forland E. J. , 2005: Statistical downscaling of climate scenarios over Scandinavia. Climate Res., 29, 255268, doi:10.3354/cr029255.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuentz, A., Mathevet T. , Gailhard J. , and Hingray B. , 2015: Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: The ANATEM method. Hydrol. Earth Syst. Sci., 19, 27172736, doi:10.5194/hessd-12-311-2015.

    • Search Google Scholar
    • Export Citation
  • Lafaysse, M., Hingray B. , Mezghani A. , Gailhard J. , and Terray L. , 2014: Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin. Water Resour. Res., 50, 33173341, doi:10.1002/2013WR014897.

    • Search Google Scholar
    • Export Citation
  • Leblois, E., and Creutin J. D. , 2013: Space–time simulation of intermittent rainfall with prescribed advection field: Adaptation to the turning band method. Water Resour. Res., 49, 33753387, doi:10.1002/wrcr.20190.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Marty, R., Zin I. , Obled C. , Bontron G. , and Djerboua A. , 2012: Toward real-time daily PQPF by an analog sorting approach: Application to flash-flood catchments. J. Appl. Meteor. Climatol., 51, 505520, doi:10.1175/JAMC-D-11-011.1.

    • Search Google Scholar
    • Export Citation
  • Marty, R., Zin I. , and Obled C. , 2013: Sensitivity of hydrological ensemble forecasts to different sources and temporal resolutions of probabilistic quantitative precipitation forecasts: Flash flood case studies in the Cévennes-Vivarais region (southern France). Hydrol. Processes, 27, 3344, doi:10.1002/hyp.9543.

    • Search Google Scholar
    • Export Citation
  • Matheson, J. E., and Winkler R. L. , 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 10871096, doi:10.1287/mnsc.22.10.1087.

    • Search Google Scholar
    • Export Citation
  • Mezghani, A., and Hingray B. , 2009: A combined downscaling-disaggregation weather generator for stochastic generation of multisite hourly weather variables over complex terrain: Development and multi-scale validation for the upper Rhone River basin. J. Hydrol., 377, 245260, doi:10.1016/j.jhydrol.2009.08.033.

    • Search Google Scholar
    • Export Citation
  • Obled, C., Bontron G. , and Garçon R. , 2002: Quantitative precipitation forecasts: a statistical adaptation of model outputs through an analogues sorting approach. Atmos. Res., 63, 303324, doi:10.1016/S0169-8095(02)00038-8.

    • Search Google Scholar
    • Export Citation
  • Quintana-Segui, P., and Coauthors, 2008: Analysis of near-surface atmospheric variables: Validation of the SAFRAN analysis over France. J. Appl. Meteor. Climatol., 47, 92107, doi:10.1175/2007JAMC1636.1.

    • Search Google Scholar
    • Export Citation
  • Stein, C. M., 1981: Estimation of the mean of a multivariate normal distribution. Ann. Stat., 9, 11351151, doi:10.1214/aos/1176345632.

    • Search Google Scholar
    • Export Citation
  • Teweles, J., and Wobus H. , 1954: Verification of prognosis charts. Bull. Amer. Meteor. Soc., 35 (10), 25992617.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vidal, J.-P., Martin E. , Franchisteguy L. , Baillon M. , and Soubeyroux J.-M. , 2010: A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int. J. Climatol., 30, 16271644, doi:10.1002/joc.2003.

    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., Bárdossy A. , Chen D. , Halldin S. , and Xu C.-Y. , 2006: Daily precipitation-downscaling techniques in three Chinese regions. Water Resour. Res., 42, W11423, doi:10.1029/2005WR004573.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and Quinn N. W. , 2013: Reconstructing multi-decadal variations in fluvial flood risk using atmospheric circulation patterns. J. Hydrol., 487, 109121, doi:10.1016/j.jhydrol.2013.02.038.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., Hay L. E. , and Leavesley G. H. , 1999: A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol., 225, 6791, doi:10.1016/S0022-1694(99)00136-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 266 74 3
PDF Downloads 158 46 2