How Will Climate Change Affect the Water Availability in the Heihe River Basin, Northwest China?

Aijing Zhang Institute of Water Sciences, Peking University, Beijing, China

Search for other papers by Aijing Zhang in
Current site
Google Scholar
PubMed
Close
,
Wenbin Liu Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wenbin Liu in
Current site
Google Scholar
PubMed
Close
,
Zhenliang Yin Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

Search for other papers by Zhenliang Yin in
Current site
Google Scholar
PubMed
Close
,
Guobin Fu CSIRO Land and Water, Wembley, Western Australia, Australia

Search for other papers by Guobin Fu in
Current site
Google Scholar
PubMed
Close
, and
Chunmiao Zheng Institute of Water Sciences, Peking University, Beijing, and School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen, China, and Department of Geological Sciences, University of Alabama, Tuscaloosa, Alabama

Search for other papers by Chunmiao Zheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a detailed analysis of how future climate change may affect water availability in a typical arid endorheic river basin, the Heihe River basin (HRB), in northwest China. The analysis is based on the improved Soil Water Assessment Tool (SWAT), which is calibrated and validated with historical streamflow data from the upper HRB and is used to predict future hydrological responses. Six general circulation models (GCMs), under two emission scenarios (RCP4.5 and RCP8.5), are downscaled to construct future climate change scenarios. The results suggest that the climate of the upper HRB will likely become warmer and wetter in the near future (2021–50), with the largest increase in precipitation occurring in the summer. Correspondingly, the basinwide evapotranspiration, snowmelt, and runoff are projected to increase over the same period. The mean temperature in the near future is projected to rise, relative to the recent 30 years (1981–2010), by 1.2°–1.7°C under scenario RCP4.5 and by 1.4°–2.1°C under scenario RCP8.5. The mean precipitation is projected to increase by 10.0%–16.6% under scenario RCP4.5, and by 10.5%–22.0% under scenario RCP8.5. The mean values of evapotranspiration, snowmelt, and runoff are expected to increase by 14.2%, 4.3%, and 11.4%, respectively, under scenario RCP4.5 and to increase by 18.7%, 5.8%, and 12.8%, respectively, under scenario RCP8.5. Though the model simulations forecast an increase in streamflows in the headwater region of the HRB, future water availability varies significantly over space and time. The findings of this study will help to frame more effective water management strategies for the HRB under changing climatic conditions.

Corresponding author address: Chunmiao Zheng, School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China. E-mail: zhengcm@sustc.edu.cn

Abstract

This paper presents a detailed analysis of how future climate change may affect water availability in a typical arid endorheic river basin, the Heihe River basin (HRB), in northwest China. The analysis is based on the improved Soil Water Assessment Tool (SWAT), which is calibrated and validated with historical streamflow data from the upper HRB and is used to predict future hydrological responses. Six general circulation models (GCMs), under two emission scenarios (RCP4.5 and RCP8.5), are downscaled to construct future climate change scenarios. The results suggest that the climate of the upper HRB will likely become warmer and wetter in the near future (2021–50), with the largest increase in precipitation occurring in the summer. Correspondingly, the basinwide evapotranspiration, snowmelt, and runoff are projected to increase over the same period. The mean temperature in the near future is projected to rise, relative to the recent 30 years (1981–2010), by 1.2°–1.7°C under scenario RCP4.5 and by 1.4°–2.1°C under scenario RCP8.5. The mean precipitation is projected to increase by 10.0%–16.6% under scenario RCP4.5, and by 10.5%–22.0% under scenario RCP8.5. The mean values of evapotranspiration, snowmelt, and runoff are expected to increase by 14.2%, 4.3%, and 11.4%, respectively, under scenario RCP4.5 and to increase by 18.7%, 5.8%, and 12.8%, respectively, under scenario RCP8.5. Though the model simulations forecast an increase in streamflows in the headwater region of the HRB, future water availability varies significantly over space and time. The findings of this study will help to frame more effective water management strategies for the HRB under changing climatic conditions.

Corresponding author address: Chunmiao Zheng, School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China. E-mail: zhengcm@sustc.edu.cn
Save
  • Allen, M. R., and Ingram W. J. , 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Allen, R., Pereira L. S. , Raes D. , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Arnell, N. W., and Gosling S. N. , 2013: The impacts of climate change on river flow regimes at the global scale. J. Hydrol., 486, 351364, doi:10.1016/j.jhydrol.2013.02.010.

    • Search Google Scholar
    • Export Citation
  • Arnold, J. G., Srinivasan R. , Muttiah R. S. , and Williams J. R. , 1998: Large area hydrologic modeling and assessment. Part I: Model development. J. Amer. Water Resour. Assoc., 34, 7389, doi:10.1111/j.1752-1688.1998.tb05961.x.

    • Search Google Scholar
    • Export Citation
  • Bales, R. C., Molotch N. P. , Painter T. H. , Dettinger M. D. , Rice R. , and Dozier J. , 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, doi:10.1029/2005WR004387.

    • Search Google Scholar
    • Export Citation
  • Booij, M. J., 2005: Impact of climate change on river flooding assessed with different spatial model resolutions. J. Hydrol., 303, 176198, doi:10.1016/j.jhydrol.2004.07.013.

    • Search Google Scholar
    • Export Citation
  • Busuioc, A., Von Storch H. , and Schnur R. , 1999: Verification of GCM-generated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions. J. Climate, 12, 258272, doi:10.1175/1520-0442-12.1.258.

    • Search Google Scholar
    • Export Citation
  • Chen, H., Xu C. Y. , and Guo S. , 2012: Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J. Hydrol., 434–435, 3645, doi:10.1016/j.jhydrol.2012.02.040.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , and Leconte R. , 2011: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401, 190202, doi:10.1016/j.jhydrol.2011.02.020.

    • Search Google Scholar
    • Export Citation
  • Chen, L. H., and Qu Y. G. , 1992: Rational Development and Utilization on Water and Soil Resources in Hexi Region (in Chinese). Science Press, 23 pp.

  • Chen, R., Kang E. , Yang J. , Zhang J. , and Wang S. , 2003: Application of TOPMODEL to simulate runoff from Heihe mainstream mountainous basin. J. Desert Res., 23 (4), 428434.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Li Z. , Fan Y. , Wang H. , and Deng H. , 2015: Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res., 139, 1119, doi:10.1016/j.envres.2014.12.029.

    • Search Google Scholar
    • Export Citation
  • Cheng, G. D., and Wu T. H. , 2007: Responses of permafrost to climate change and their environmental significance, Qinghai–Tibet Plateau. J. Geophys. Res., 112, F02S03, doi:10.1029/2006JF000631.

    • Search Google Scholar
    • Export Citation
  • Cheng, G. D., Li X. , Zhao W. Z. , Xu Z. M. , Feng Q. , Xiao S. C. , and Xiao H. L. , 2014: Integrated study of the water–ecosystem–economy in the Heihe River basin. Natl. Sci. Rev., 1, 413428, doi:10.1093/nsr/nwu017.

    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., Kirono D. G. C. , Kent D. M. , Frost A. J. , Charles S. P. , Timbal B. , Nguyen K. C. , and Fu G. , 2010: Comparison of runoff modeled using rainfall from different downscaling methods for historical and future climates. J. Hydrol., 387, 1023, doi:10.1016/j.jhydrol.2010.03.025.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., and Lettenmaier D. P. , 2007: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrol. Earth Syst. Sci., 11, 14171434, doi:10.5194/hess-11-1417-2007.

    • Search Google Scholar
    • Export Citation
  • Deng, S. F., Yang T. B. , Zeng B. , Zhu X. F. , and Xu H. J. , 2013: Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011. J. Mt. Sci., 10, 10501062, doi:10.1007/s11629-013-2558-z.

    • Search Google Scholar
    • Export Citation
  • Feng, Q., Cheng G. D. , and Endo K. N. , 2001: Towards sustainable development of the environmentally degraded River Heihe basin, China. Hydrol. Sci. J., 46, 647658, doi:10.1080/02626660109492862.

    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., and Barnhart B. L. , 2014: SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds. J. Hydrol., 519, 20812090, doi:10.1016/j.jhydrol.2014.09.082.

    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., Stewart I. T. , and Maurer E. P. , 2013: Effects of projected climate change on the hydrology in the Mono Lake basin, California. Climatic Change, 116, 111131, doi:10.1007/s10584-012-0566-6.

    • Search Google Scholar
    • Export Citation
  • Fontaine, T. A., Cruickshank T. S. , Arnold J. G. , and Hotchkiss R. H. , 2002: Development of a snowfall–snowmelt routine for mountainous terrain for the Soil Water Assessment Tool (SWAT). J. Hydrol., 262, 209223, doi:10.1016/S0022-1694(02)00029-X.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., Blenkinsop S. , and Tebaldi C. , 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Fu, G., Liu Z. , Charles S. P. , Xu Z. , and Yao Z. , 2013: A score-based method for assessing the performance of GCMs: A case study of southeastern Australia. J. Geophys. Res. Atmos., 118, 41544167, doi:10.1002/jgrd.50269.

    • Search Google Scholar
    • Export Citation
  • Ge, Y. C., Li X. , Huang C. L. , and Nan Z. T. , 2013: A decision support system for irrigation water allocation along the middle reaches of the Heihe River basin, northwest China. Environ. Modell. Software, 47, 182192, doi:10.1016/j.envsoft.2013.05.010.

    • Search Google Scholar
    • Export Citation
  • Guo, Q. L., Feng Q. , and Li J. L. , 2009: Environmental changes after ecological water conveyance in the lower reaches of Heihe River, northwest China. Environ. Geol., 58, 13871396, doi:10.1007/s00254-008-1641-1.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., Salathé E. P. , and Carrasco P. , 2010: Statistical downscaling techniques for global climate model simulations of temperature and precipitation with application to water resources planning studies. Final Rep. for the Columbia Basin Climate Change Scenarios Project, Ch. 4, 1–28. [Available online at http://warm.atmos.washington.edu/2860/r7climate/study_report/CBCCSP_chap4_gcm_final.pdf.]

  • He, Z. B., and Zhao W. Z. , 2006: Characterizing the spatial structures of riparian plant communities in the lower reaches of the Heihe River in China using geostatistical techniques. Ecol. Res., 21, 551559, doi:10.1007/s11284-006-0160-3.

    • Search Google Scholar
    • Export Citation
  • Im, E.-S., and Eltahir E. A. B. , 2014: Enhancement of rainfall and runoff upstream from irrigation location in a climate model of West Africa. Water Resour. Res., 50, 86518674, doi:10.1002/2014WR015592.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Jung, I. W., and Chang H. , 2011: Assessment of future runoff trends under multiple climate change scenarios in the Willamette River basin, Oregon, USA. Hydrol. Processes, 25, 258277, doi:10.1002/hyp.7842.

    • Search Google Scholar
    • Export Citation
  • Kang, E. S., Cheng G. D. , Lan Y. C. , and Jin H. J. , 1999: A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climate changes. Sci. China, 42D, 5263, doi:10.1007/BF02878853.

    • Search Google Scholar
    • Export Citation
  • Kim, J., Choi J. , Choi C. , and Park S. , 2013: Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River basin, Korea. Sci. Total Environ., 452–453, 181195, doi:10.1016/j.scitotenv.2013.02.005.

    • Search Google Scholar
    • Export Citation
  • Li, S. B., Zhao C. Y. , and Feng Z. D. , 2009: Modeling of temporal and spatial distribution of groundwater level in the water table fluctuant belt of the lower reaches of Heihe River: Application of FELLOW software. Arid Land Geogr., 32 (3), 391396.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Xu Z. , Shao Q. , and Yang J. , 2009: Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe River basin. Hydrol. Processes, 23, 27442753, doi:10.1002/hyp.7371.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Shao Q. X. , Xu Z. X. , and Cai X. T. , 2010: Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: A case study of SWAT model applied to Yingluoxia watershed in northwest China. J. Hydrol., 385, 7683, doi:10.1016/j.jhydrol.2010.01.025.

    • Search Google Scholar
    • Export Citation
  • Liu, W. B., Zhang A. J. , Wang L. , Fu G. B. , Chen D. L. , Liu C. M. , and Cai T. J. , 2015: Projecting the future climate impacts on streamflow in Tangwang River basin (China) using a rainfall generator and two hydrological models. Climate Res., 62, 7997, doi:10.3354/cr01261.

    • Search Google Scholar
    • Export Citation
  • Lu, Z. X., Zou S. B. , Xiao H. L. , Zheng C. M. , Yin Z. L. , and Wang W. H. , 2014: Comprehensive hydrologic calibration of SWAT and water balance analysis in mountainous watersheds in northwest China. Phys. Chem. Earth, 79–82, 7685, doi:10.1016/j.pce.2014.11.003.

    • Search Google Scholar
    • Export Citation
  • Ma, C., Sun L. , Liu S. , Shao M. A. , and Luo Y. , 2015: Impact of climate change on the streamflow in the glacierized Chu River basin, central Asia. J. Arid Land, 7, 501513, doi:10.1007/s40333-015-0041-0.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D., Arnold J. , Van Liew M. , Bingner R. , Harmel R. , and Veith T. , 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, doi:10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Mpelasoka, F. S., and Chiew F. H. S. , 2009: Influence of rainfall scenario construction methods on runoff projections. J. Hydrometeor., 10, 11681183, doi:10.1175/2009JHM1045.1.

    • Search Google Scholar
    • Export Citation
  • Nakawo, M., 2009: Shrinkage of summer accumulation glaciers in Asia under consideration of downstream population. Assessment of Snow, Glacier and Water Resources in Asia, IHP/HWRP, 19–25.

  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Neitsch, S. L., Arnold J. G. , Kiniry J. R. , Williams J. R. , and King K. W. , 2005: Soil and water assessment tool theoretical documentation: Version 2005. Texas Water Resources Institute, 494 pp. [Available online at http://swat.tamu.edu/media/1292/swat2005theory.pdf.]

  • NRC, 2012: Challenges and Opportunities in the Hydrologic Sciences. National Academies Press, 200 pp.

  • Qin, J., and Coauthors, 2013: Understanding the impact of mountain landscapes on water balance in the upper Heihe River watershed in northwestern China. J. Arid Land, 5, 366383, doi:10.1007/s40333-013-0162-2.

    • Search Google Scholar
    • Export Citation
  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res., 17, 182190, doi:10.1029/WR017i001p00182.

    • Search Google Scholar
    • Export Citation
  • Ruelland, D., Ardoin-Bardin S. , Collet L. , and Roucou P. , 2012: Simulating future trends in hydrological regime of a large Sudano–Sahelian catchment under climate change. J. Hydrol., 424–425, 207216, doi:10.1016/j.jhydrol.2012.01.002.

    • Search Google Scholar
    • Export Citation
  • Rumbaur, C., and Coauthors, 2015: Sustainable management of river oases along the Tarim River (SuMaRiO) in northwest China under conditions of climate change. Earth Syst. Dyn., 6, 83107, doi:10.5194/esd-6-83-2015.

    • Search Google Scholar
    • Export Citation
  • Sakai, A., Fujita K. , Duan K. , Pu J. C. , Nakawo M. , and Yao T. D. , 2006: Five decades of shrinkage of July 1st glacier, Qilian Shan, China. J. Glaciol., 52, 1116, doi:10.3189/172756506781828836.

    • Search Google Scholar
    • Export Citation
  • Schoof, J. T., Pryor S. C. , and Surprenant J. , 2010: Development of daily precipitation projections for the United States based on probabilistic downscaling. J. Geophys. Res., 115, D13106, doi:10.1029/2009JD013030.

    • Search Google Scholar
    • Export Citation
  • Shi, Y., Shen Y. , Kang E. , Li D. , Ding Y. , Zhang G. , and Hu R. , 2007: Recent and future climate change in northwest China. Climatic Change, 80, 379393, doi:10.1007/s10584-006-9121-7.

    • Search Google Scholar
    • Export Citation
  • Sun, Q., Miao C. , and Duan Q. , 2015: Projected changes in temperature and precipitation in ten river basins over China in 21st century. Int. J. Climatol., 35, 11251141, doi:10.1002/joc.4043.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., and Jones D. A. , 2008: Future projections of winter rainfall in southeast Australia using a statistical downscaling technique. Climatic Change, 86, 165187, doi:10.1007/s10584-007-9279-7.

    • Search Google Scholar
    • Export Citation
  • Wang, H., Chen Y. , Li W. , and Deng H. , 2013: Runoff responses to climate change in arid region of northwestern China during 1960–2010. Chin. Geogr. Sci., 23, 286300, doi:10.1007/s11769-013-0605-x.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Li S. , 2006: Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in northwestern China. Sci. China, 49D, 881888, doi:10.1007/s11430-006-0881-8.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Li H. , and Hao X. , 2010: Responses of snowmelt runoff to climatic change in an inland river basin, northwestern China, over the past 50 years. Hydrol. Earth Syst. Sci., 14, 19791987, doi:10.5194/hess-14-1979-2010.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and Chen W. , 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol., 34, 20592078, doi:10.1002/joc.3822.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Koike T. , Yang K. , Jin R. , and Li H. , 2010: Frozen soil parameterization in a distributed biosphere hydrological model. Hydrol. Earth Syst. Sci., 14, 557571, doi:10.5194/hess-14-557-2010.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Kang S. , Zhang L. , and Li F. , 2008: Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Hydrol. Processes, 22, 25022510, doi:10.1002/hyp.6846.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and Harris I. , 2006: A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res., 42, W02419, doi:10.1029/2005WR004065.

    • Search Google Scholar
    • Export Citation
  • Wu, B., Zheng Y. , Tian Y. , Wu X. , Yao Y. Y. , Han F. , Liu J. , and Zheng C. M. , 2014: Systematic assessment of the uncertainty in integrated surface water–groundwater modeling based on the probabilistic collocation method. Water Resour. Res., 50, 58485865, doi:10.1002/2014WR015366.

    • Search Google Scholar
    • Export Citation
  • Wu, B., Zheng Y. , Wu X. , Tian Y. , Han F. , Liu J. , and Zheng C. , 2015: Optimizing water resources management in large river basins with integrated surface water–groundwater modeling: A surrogate‐based approach. Water Resour. Res., 51, 21532173, doi:10.1002/2014WR016653.

    • Search Google Scholar
    • Export Citation
  • Wu, B. F., Xiong J. , and Yan N. , 2010: ETWatch: Models and methods. J. Remote Sens, 15 (2), 224230.

  • Wu, B. F., Yan N. , Xiong J. , Bastiaanssen W. G. M. , Zhu W. , and Stein A. , 2012: Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai basin of China. J. Hydrol., 436–437, 6780, doi:10.1016/j.jhydrol.2012.02.043.

    • Search Google Scholar
    • Export Citation
  • Xu, J., Chen Y. , Lu F. , Li W. , Zhang L. , and Hong Y. , 2011: The nonlinear trend of runoff and its response to climate change in the Aksu River, western China. Int. J. Climatol., 31, 687695, doi:10.1002/joc.2110.

    • Search Google Scholar
    • Export Citation
  • Xu, Y. P., Zhang X. , Ran Q. , and Tian Y. , 2013: Impact of climate change on hydrology of upper reaches of Qiantang River basin, east China. J. Hydrol., 483, 5160, doi:10.1016/j.jhydrol.2013.01.004.

    • Search Google Scholar
    • Export Citation
  • Yao, Y. Y., Zheng C. M. , Liu J. , Cao G. L. , Xiao H. L. , Li H. T. , and Li W. P. , 2014: Conceptual and numerical models for groundwater flow in an arid inland river basin. Hydrol. Processes, 29, 14801492, doi:10.1002/hyp.10276.

    • Search Google Scholar
    • Export Citation
  • Yin, Z., Xiao H. , Zou S. , Zhu R. , Lu Z. , Lan Y. , and Shen Y. , 2014: Simulation of hydrological processes of mountainous watersheds in inland river basins: Taking the Heihe Mainstream River as an example. J. Arid Land, 6, 1626, doi:10.1007/s40333-013-0197-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, A. J., Zheng C. , Wang S. , and Yao Y. , 2015: Analysis of streamflow variations in the Heihe River basin: Trends, abrupt change, driving factors and ecological influences. J. Hydrol.: Reg. Stud., 3, 106124, doi:10.1016/j.ejrh.2014.10.005.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Fu G. , Sun B. , Zhang S. , and Men B. , 2015: Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of northwest China. J. Geophys. Res. Atmos., 120, 74297453, doi:10.1002/2015JD023294.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y. B., Nan Z. T. , Chen H. , Li X. , Ramasamy J. , and Yu W. J. , 2013: Integrated hydrologic modeling in the inland Heihe River basin, northwest China. Sci. Cold Arid Reg., 5, 3550, doi:10.3724/SP.J.1226.2013.00035.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 684 234 20
PDF Downloads 505 161 15