Evaluating Satellite Precipitation Error Propagation in Runoff Simulations of Mountainous Basins

Yiwen Mei Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Yiwen Mei in
Current site
Google Scholar
PubMed
Close
,
Efthymios I. Nikolopoulos Innovation Technologies Center, and Department of Physics, University of Athens, Athens, Greece

Search for other papers by Efthymios I. Nikolopoulos in
Current site
Google Scholar
PubMed
Close
,
Emmanouil N. Anagnostou Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Emmanouil N. Anagnostou in
Current site
Google Scholar
PubMed
Close
, and
Marco Borga Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro, Padua, Italy

Search for other papers by Marco Borga in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the error characteristics of six quasi-global satellite precipitation products and their error propagation in flow simulations for a range of mountainous basin scales (255–6967 km2) and two different periods (May–August and September–November) in northeast Italy. Statistics describing the systematic and random error, the temporal similarity, and error ratios between precipitation and runoff are presented. Overall, strong over-/underestimation associated with the near-real-time 3B42/Climate Prediction Center morphing technique (CMORPH) products is shown. Results suggest positive correlation between the systematic error and basin elevation. Performance evaluation of flow simulations yields a higher degree of consistency for the moderate to large basin scales and the May–August period. Gauge adjustment for the different satellite products is shown to moderate their error magnitude and increase their correlation with reference precipitation and streamflow simulations. Moreover, ratios of precipitation to streamflow simulation error metrics show dependencies in terms of magnitude and variability. Random error and temporal dissimilarity are shown to reduce from basin-average rainfall to the streamflow simulations, while the systematic error exhibits no clear pattern in the rainfall–runoff transformation.

Corresponding author address: Emmanouil N. Anagnostou, Civil and Environmental Engineering, University of Connecticut, Unit 2037, Storrs, CT 06269. E-mail: manos@engr.uconn.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

This study investigates the error characteristics of six quasi-global satellite precipitation products and their error propagation in flow simulations for a range of mountainous basin scales (255–6967 km2) and two different periods (May–August and September–November) in northeast Italy. Statistics describing the systematic and random error, the temporal similarity, and error ratios between precipitation and runoff are presented. Overall, strong over-/underestimation associated with the near-real-time 3B42/Climate Prediction Center morphing technique (CMORPH) products is shown. Results suggest positive correlation between the systematic error and basin elevation. Performance evaluation of flow simulations yields a higher degree of consistency for the moderate to large basin scales and the May–August period. Gauge adjustment for the different satellite products is shown to moderate their error magnitude and increase their correlation with reference precipitation and streamflow simulations. Moreover, ratios of precipitation to streamflow simulation error metrics show dependencies in terms of magnitude and variability. Random error and temporal dissimilarity are shown to reduce from basin-average rainfall to the streamflow simulations, while the systematic error exhibits no clear pattern in the rainfall–runoff transformation.

Corresponding author address: Emmanouil N. Anagnostou, Civil and Environmental Engineering, University of Connecticut, Unit 2037, Storrs, CT 06269. E-mail: manos@engr.uconn.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., Maggioni V. , Nikolopoulous E. I. , Meskele T. , Hossain F. , and Papadopoulos A. , 2010: Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens., 48, 16671683, doi:10.1109/TGRS.2009.2034736.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Ardanuy P. E. , 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 12291238, doi:10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Artan, G., Gadain H. , Smith J. L. , Asante K. , Bandaragoda C. J. , and Verdin J. P. , 2007: Adequacy of satellite derived rainfall data for stream flow modeling. Nat. Hazards, 43, 167185, doi:10.1007/s11069-007-9121-6.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., and Gebremichael M. , 2011: Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci., 15, 11471155, doi:10.5194/hess-15-1147-2011.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., Gebremichael M. , Ghebremichael L. T. , and Bayissa Y. A. , 2012: Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J. Hydrometeor., 13, 338350, doi:10.1175/2011JHM1292.1.

    • Search Google Scholar
    • Export Citation
  • Borga, M., Nikolopoulos E. I. , Zoccatelli D. , and Marra F. , 2014: Extension of Adige River Flood Forecasting System for debris flow forecasting, simulation of glacial hydrology and artificial reservoir storage accounting. Rep. N15, University of Padova, 152 pp.

  • Carpenter, T. M., and Georgakakos K. P. , 2006: Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. J. Hydrol., 329, 174185, doi:10.1016/j.jhydrol.2006.02.013.

    • Search Google Scholar
    • Export Citation
  • Cazorzi, F., and Dalla Fontana G. , 1996: Snowmelt modelling by combining air temperature and a distributed radiation index. J. Hydrol., 181, 169187, doi:10.1016/0022-1694(95)02913-3.

    • Search Google Scholar
    • Export Citation
  • Cunge, J. A., 1969: On the subject of a flood propagation computation method (Muskingum Method). J. Hydraul. Res., 7, 205230, doi:10.1080/00221686909500264.

    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., Mandapaka P. V. , Krajewski W. F. , Mantilla R. , and Bradley A. A. , 2012: Impact of radar–rainfall error structure on estimated flood magnitude across scales: An investigation based on a parsimonious distributed hydrological model. Water Resour. Res., 48, W10515, doi:10.1029/2012WR012138.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and Schär C. , 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Hong Y. , Flamig Z. L. , Wang J. , Vergara H. , and Anagnostou E. N. , 2011: Hydrologic evaluation of rainfall estimates from radar, satellite, gauge, and combinations on Ft. Cobb basin, Oklahoma. J. Hydrometeor., 12, 973988, doi:10.1175/2011JHM1287.1.

    • Search Google Scholar
    • Export Citation
  • Grimes, D. I. F., and Diop M. , 2003: Satellite-based rainfall estimation for river flow forecasting in Africa. I: Rainfall estimates and hydrological forecasts. Hydrol. Sci. J., 48, 567584, doi:10.1623/hysj.48.4.567.51410.

    • Search Google Scholar
    • Export Citation
  • Guetter, A. K., Georgakakos K. P. , and Tsonis A. A. , 1996: Hydrologic applications of satellite data: 2. Flow simulation and soil water estimates. J. Geophys. Res., 101, 26 52726 538, doi:10.1029/96JD01655.

    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. H., and Samani Z. A. , 1982: Estimating potential evapotranspiration. J. Irrig. Drain. Div., 108, 225230.

  • Hossain, F., and Anagnostou E. N. , 2004: Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res., 109, D07102, doi:10.1029/2003JD003986.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Gu G. , 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Nelkin E. J. , 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, doi:10.1007/978-90-481-2915-7_1.

  • Jiang, S., Ren L. , Hong Y. , Yong B. , Yang X. , Yuan F. , and Ma M. , 2012: Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol., 452–453, 213225, doi:10.1016/j.jhydrol.2012.05.055.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Kniveton D. R. , Todd M. C. , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104, doi:10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2009: Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia basin, Lake Victoria, Africa. Nat. Hazards, 50, 109123, doi:10.1007/s11069-008-9324-5.

    • Search Google Scholar
    • Export Citation
  • Li, X.-H., Zhang Q. , and Xu C.-Y. , 2012: Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. J. Hydrol., 426–427, 2838, doi:10.1016/j.jhydrol.2012.01.013.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., Vergara H. J. , Anagnostou E. N. , Gourley J. J. , Hong Y. , and Stampoulis D. , 2013: Investigating the applicability of error correction ensembles of satellite rainfall products in river flow simulations. J. Hydrometeor., 14, 11941211, doi:10.1175/JHM-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Marchi, L., Borga M. , Preciso E. , and Gaume É. , 2010: Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol., 394, 118133, doi:10.1016/j.jhydrol.2010.07.017.

    • Search Google Scholar
    • Export Citation
  • Mei, Y., Anagnostou E. N. , Nikolopoulos E. I. , and Borga M. , 2014: Error analysis of satellite rainfall products in mountainous basins. J. Hydrometeor., 15, 17781793, doi:10.1175/JHM-D-13-0194.1.

    • Search Google Scholar
    • Export Citation
  • Mei, Y., Anagnostou E. N. , Nikolopoulos E. I. , and Borga M. , 2015: Reply to “Comments on ‘Error analysis of satellite precipitation products in mountainous basins.’” J. Hydrometeor., 16, 14451446, doi:10.1175/JHM-D-15-0022.1.

    • Search Google Scholar
    • Export Citation
  • Moore, R. J., 1985: The probability-distributed principle and runoff production at point and basin scales. Hydrol. Sci. J., 30, 273297, doi:10.1080/02626668509490989.

    • Search Google Scholar
    • Export Citation
  • Moore, R. J., 2007: The PDM rainfall–runoff model. Hydrol. Earth Syst. Sci., 11, 483499, doi:10.5194/hess-11-483-2007.

  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., Anagnostou E. N. , Hossain F. , Gebremichael M. , and Borga M. , 2010: Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model. J. Hydrometeor., 11, 520532, doi:10.1175/2009JHM1169.1.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., Anagnostou E. N. , Borga M. , Vivoni E. R. , and Papadopoulos A. , 2011: Sensitivity of a mountain basin flash flood to initial wetness condition and rainfall variability. J. Hydrol., 402, 165178, doi:10.1016/j.jhydrol.2010.12.020.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., Anagnostou E. N. , and Borga M. , 2013: Using high-resolution satellite rainfall products to simulate a major flash flood event in northern Italy. J. Hydrometeor., 14, 171185, doi:10.1175/JHM-D-12-09.1.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., Borga M. , Creutin J. D. , and Marra F. , 2015: Estimation of debris flow triggering rainfall: Influence of rain gauge density and interpolation methods. Geomorphology, 243, 4050, doi:10.1016/j.geomorph.2015.04.028.

    • Search Google Scholar
    • Export Citation
  • Norbiato, D., Borga M. , Degli Esposti S. , Guame E. , and Anquetin S. , 2008: Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. J. Hydrol., 362, 274290, doi:10.1016/j.jhydrol.2008.08.023.

    • Search Google Scholar
    • Export Citation
  • Norbiato, D., Borga M. , and Dinale R. , 2009a: Flash flood warning in ungauged basins by use of the flash flood guidance and model-based runoff thresholds. Met. Appl., 16, 6575, doi:10.1002/met.126.

    • Search Google Scholar
    • Export Citation
  • Norbiato, D., Borga M. , Merz R. , Blöschl G. , and Carton A. , 2009b: Controls on event runoff coefficients in the eastern Italian Alps. J. Hydrol., 375, 312325, doi:10.1016/j.jhydrol.2009.06.044.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K.-L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Su, F., Hong Y. , and Lettenmaier D. P. , 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. J. Hydrometeor., 9, 622640, doi:10.1175/2007JHM944.1.

    • Search Google Scholar
    • Export Citation
  • Thiemig, V., Rojas R. , Zambrano-Bigiarini M. , and De Roo A. , 2013: Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo basin. J. Hydrol., 499, 324338, doi:10.1016/j.jhydrol.2013.07.012.

    • Search Google Scholar
    • Export Citation
  • Tobin, K. J., and Bennett M. E. , 2009: Using SWAT to model streamflow in two river basins with ground and satellite precipitation data. J. Amer. Water Resour. Assoc., 45, 253271, doi:10.1111/j.1752-1688.2008.00276.x.

    • Search Google Scholar
    • Export Citation
  • Tong, K., Su F. , Yang D. , and Hao Z. , 2014: Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol., 519A, 423437, doi:10.1016/j.jhydrol.2014.07.044.

    • Search Google Scholar
    • Export Citation
  • Tsintikidis, D., Georgakakos K. P. , Artan G. A. , and Tsonis A. A. , 1999: A feasibility study on mean areal rainfall estimation and hydrologic response in the Blue Nile region using METEOSAT images. J. Hydrol., 221, 97116, doi:10.1016/S0022-1694(99)00071-2.

    • Search Google Scholar
    • Export Citation
  • Vergara, H., Hong Y. , Gourley J. J. , Anagnostou E. N. , Maggioni V. , Stampoulis D. , and Kirstetter P.-E. , 2014: Effects of resolution of satellite-based rainfall estimates on hydrologic modeling skill at different scales. J. Hydrometeor., 15, 593613, doi:10.1175/JHM-D-12-0113.1.

    • Search Google Scholar
    • Export Citation
  • Wilk, J., Kniveton D. , Andersson L. , Layberry R. , Todd M. C. , Hughes D. , Ringrose S. , and Vanderpost C. , 2006: Estimating rainfall and water balance over the Okavango River basin for hydrological applications. J. Hydrol., 331, 1829, doi:10.1016/j.jhydrol.2006.04.049.

    • Search Google Scholar
    • Export Citation
  • Xie, P., Yoo S.-H. , Joyce R. , and Yarosh Y. , 2011: Bias-corrected CMORPH: A 13-year analysis of high-resolution global precipitation. Geophysical Research Abstracts, Vol. 13, Abstract 1809. [Available online at http://meetingorganizer.copernicus.org/EGU2011/EGU2011-1809.pdf.]

  • Yilmaz, K. K., Hogue T. S. , Hsu K. , Sorooshian S. , Gupta H. V. , and Wagener T. , 2005: Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeor., 6, 497517, doi:10.1175/JHM431.1.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Ren L.-L. , Hong Y. , Wang J.-H. , Gourley J. J. , Jiang S.-H. , Chen X. , and Wang W. , 2010: Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res., 46, W07542, doi:10.1029/2009WR008965.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Hong Y. , Ren L.-L. , Gourley J. J. , Huffman G. J. , Chen X. , Wang W. , and Khan S. I. , 2012: Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res., 117, D09108, doi:10.1029/2011JD017069.

    • Search Google Scholar
    • Export Citation
  • Yong, B., and Coauthors, 2013: First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes. Water Resour. Res., 49, 24612472, doi:10.1002/wrcr.20246.

    • Search Google Scholar
    • Export Citation
  • Zahumenský, I., 2010: Guidelines on quality control procedures for data from automatic weather stations. CIMO/OPAG-SURFACE/ET ST&MT-1/Doc.6.1(2), WMO, 10 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/meetings/Surface/ET-STMT1_Geneva2004/Doc6.1(2).pdf.]

  • Zhu, D., Peng D. Z. , and Cluckie I. D. , 2013: Statistical analysis of error propagation from radar rainfall to hydrological models. Hydrol. Earth Syst. Sci., 17, 14451453, doi:10.5194/hess-17-1445-2013.

    • Search Google Scholar
    • Export Citation
  • Zulkafli, Z., Buytaert W. , Onof C. , Manz B. , Tarnavsky E. , Lavado W. , and Guyot J.-L. , 2014: A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon River basins. J. Hydrometeor., 15, 581592, doi:10.1175/JHM-D-13-094.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1135 360 19
PDF Downloads 616 107 7