Role of Runoff–Infiltration Partitioning and Resolved Overland Flow on Land–Atmosphere Feedbacks: A Case Study with the WRF-Hydro Coupled Modeling System for West Africa

Joel Arnault Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, and Chair for Regional Climate and Hydrology, Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Joel Arnault in
Current site
Google Scholar
PubMed
Close
,
Sven Wagner Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, and Chair for Regional Climate and Hydrology, Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Sven Wagner in
Current site
Google Scholar
PubMed
Close
,
Thomas Rummler Chair for Regional Climate and Hydrology, Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Thomas Rummler in
Current site
Google Scholar
PubMed
Close
,
Benjamin Fersch Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by Benjamin Fersch in
Current site
Google Scholar
PubMed
Close
,
Jan Bliefernicht Chair for Regional Climate and Hydrology, Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Jan Bliefernicht in
Current site
Google Scholar
PubMed
Close
,
Sabine Andresen Chair for Regional Climate and Hydrology, Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Sabine Andresen in
Current site
Google Scholar
PubMed
Close
, and
Harald Kunstmann Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, and Chair for Regional Climate and Hydrology, Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The analysis of land–atmosphere feedbacks requires detailed representation of land processes in atmospheric models. The focus here is on runoff–infiltration partitioning and resolved overland flow. In the standard version of WRF, runoff–infiltration partitioning is described as a purely vertical process. In WRF-Hydro, runoff is enhanced with lateral water flows. The study region is the Sissili catchment (12 800 km2) in West Africa, and the study period is from March 2003 to February 2004. The WRF setup here includes an outer and inner domain at 10- and 2-km resolution covering the West Africa and Sissili regions, respectively. In this WRF-Hydro setup, the inner domain is coupled with a subgrid at 500-m resolution to compute overland and river flow. Model results are compared with TRMM precipitation, model tree ensemble (MTE) evapotranspiration, Climate Change Initiative (CCI) soil moisture, CRU temperature, and streamflow observation. The role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks is addressed with a sensitivity analysis of WRF results to the runoff–infiltration partitioning parameter and a comparison between WRF and WRF-Hydro results, respectively. In the outer domain, precipitation is sensitive to runoff–infiltration partitioning at the scale of the Sissili area (~100 × 100 km2), but not of area A (500 × 2500 km2). In the inner domain, where precipitation patterns are mainly prescribed by lateral boundary conditions, sensitivity is small, but additionally resolved overland flow here clearly increases infiltration and evapotranspiration at the beginning of the wet season when soils are still dry. The WRF-Hydro setup presented here shows potential for joint atmospheric and terrestrial water balance studies and reproduces observed daily discharge with a Nash–Sutcliffe model efficiency coefficient of 0.43.

Denotes Open Access content.

Corresponding author address: Joel Arnault, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kreutzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany. E-mail: joel.arnault@kit.edu

Abstract

The analysis of land–atmosphere feedbacks requires detailed representation of land processes in atmospheric models. The focus here is on runoff–infiltration partitioning and resolved overland flow. In the standard version of WRF, runoff–infiltration partitioning is described as a purely vertical process. In WRF-Hydro, runoff is enhanced with lateral water flows. The study region is the Sissili catchment (12 800 km2) in West Africa, and the study period is from March 2003 to February 2004. The WRF setup here includes an outer and inner domain at 10- and 2-km resolution covering the West Africa and Sissili regions, respectively. In this WRF-Hydro setup, the inner domain is coupled with a subgrid at 500-m resolution to compute overland and river flow. Model results are compared with TRMM precipitation, model tree ensemble (MTE) evapotranspiration, Climate Change Initiative (CCI) soil moisture, CRU temperature, and streamflow observation. The role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks is addressed with a sensitivity analysis of WRF results to the runoff–infiltration partitioning parameter and a comparison between WRF and WRF-Hydro results, respectively. In the outer domain, precipitation is sensitive to runoff–infiltration partitioning at the scale of the Sissili area (~100 × 100 km2), but not of area A (500 × 2500 km2). In the inner domain, where precipitation patterns are mainly prescribed by lateral boundary conditions, sensitivity is small, but additionally resolved overland flow here clearly increases infiltration and evapotranspiration at the beginning of the wet season when soils are still dry. The WRF-Hydro setup presented here shows potential for joint atmospheric and terrestrial water balance studies and reproduces observed daily discharge with a Nash–Sutcliffe model efficiency coefficient of 0.43.

Denotes Open Access content.

Corresponding author address: Joel Arnault, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kreutzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany. E-mail: joel.arnault@kit.edu
Save
  • Adler, B., Kalthoff N. , and Gantner L. , 2011: Initiation of deep convection caused by land-surface inhomogeneities in West Africa: A modelled case study. Meteor. Atmos. Phys., 112, 1527, doi:10.1007/s00703-011-0131-2.

    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., Balsamo G. , and Beljaars A. , 2010: Impact of improved soil moisture on the ECMWF precipitation forecast in West Africa. Geophys. Res. Lett., 37, L20808, doi:10.1029/2010GL044748.

    • Search Google Scholar
    • Export Citation
  • Albergel, C., and Coauthors, 2008: From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci., 12, 13231337, doi:10.5194/hess-12-1323-2008.

    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., Weaver C. P. , Miguez-Macho G. , Fan Y. , and Robock A. , 2008: Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land–atmosphere variability. J. Geophys. Res., 113, D0703, doi:10.1029/2007JD009087.

    • Search Google Scholar
    • Export Citation
  • Bliefernicht, J., and Coauthors, 2013: Field and simulation experiments for investigating regional land–atmosphere interactions in West Africa: Experimental setup and first results. IAHS Publ., 359, 226232.

    • Search Google Scholar
    • Export Citation
  • Bonsor, H. C., and MacDonald A. M. , 2011: An initial estimate of depth to groundwater across Africa. British Geological Survey Open Rep. OR/11/067, 26 pp.

  • Brocca, L., and Coauthors, 2011: Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ., 115, 33903408, doi:10.1016/j.rse.2011.08.003.

    • Search Google Scholar
    • Export Citation
  • Browne, N. A. K., and Sylla M. B. , 2012: Regional climate model sensitivity to domain size for the simulation of the West African summer monsoon rainfall. Int. J. Geophys., 2012, 625831, doi:10.1155/2012/625831.

    • Search Google Scholar
    • Export Citation
  • Casenave, A., and Valentin C. , 1992: A runoff capability classification system based on surface features criteria in semi-arid areas of West Africa. J. Hydrol., 130, 231249, doi:10.1016/0022-1694(92)90112-9.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 Modeling System. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Zhang Y. , 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Search Google Scholar
    • Export Citation
  • Chevallier, P., and Planchon O. , 1993: Hydrological processes in a small humid savanna basin (Ivory Coast). J. Hydrol., 151, 173191, doi:10.1016/0022-1694(93)90235-2.

    • Search Google Scholar
    • Export Citation
  • Csiszar, I., and Gutman G. , 1999: Mapping global land surface albedo from NOAA/AVHRR. J. Geophys. Res., 104, 62156228, doi:10.1029/1998JD200090.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delire, C., de Noblet-Ducoudré N. , Sima A. , and Gouirand I. , 2011: Effect of vegetation dynamics on climate variability: Contrasting results from two modeling studies. J. Climate, 24, 22382257, doi:10.1175/2010JCLI3664.1.

    • Search Google Scholar
    • Export Citation
  • Descroix, L., and Coauthors, 2009: Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. J. Hydrol., 375, 90102, doi:10.1016/j.jhydrol.2008.12.012.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • d’Orgeval, T., and Polcher J. , 2008: Impacts of precipitation events and land-use changes on West African river discharges during the years 1951–2000. Climate Dyn., 31, 249262, doi:10.1007/s00382-007-0350-x.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2014: Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ., 162, 380395, doi:10.1016/j.rse.2014.07.023.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunne, T., 1978: Field studies of hillslope flow processes. Hillslope Hydrology, J. J. Kirkby, Ed., Wiley, 227–293.

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grummann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational Mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Esteves, M., and Lapetite J. M. , 2003: A multi-scale approach of runoff generation in a Sahelian gully catchment: A case study in Niger. Catena, 50, 255271, doi:10.1016/S0341-8162(02)00136-4.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. , 2003: Atmospheric controls on soil moisture–boundary layer interactions: Three-dimensional wind effects. J. Geophys. Res., 108, 8385, doi:10.1029/2001JD001515.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, doi:10.1016/S0034-4257(02)00078-0.

    • Search Google Scholar
    • Export Citation
  • Froidevaux, P., Schlemmer L. , Schmidli J. , Langhans W. , and Schär C. , 2014: Influence of the background wind on the local soil moisture–precipitation feedbacks. J. Atmos. Sci., 71, 782799, doi:10.1175/JAS-D-13-0180.1.

    • Search Google Scholar
    • Export Citation
  • Gantner, L., and Kalthoff N. , 2010: Sensitivity of a modelled life cycle of a mesoscale convective system to soil conditions over West Africa. Quart. J. Roy. Meteor. Soc., 136, 471482, doi:10.1002/qj.425.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Chen F. , 2003: Hydrological enhancements to the community Noah land surface model. NCAR Scientific Tech. Rep., 77 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-516.pdf.]

  • Gochis, D., Yu W. , and Yates D. N. , 2014: The WRF-Hydro model technical description and user’s guide, version 2.0. NCAR Tech. Doc., 120 pp. [Available online at https://www.ral.ucar.edu/projects/wrf_hydro.]

  • Grell, G., Dudhia J. , and Stauffer D. , 1994: A description of the Fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp., doi:10.5065/D60Z716B.

  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and Ignatov A. , 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, doi:10.1080/014311698215333.

    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., Leung L. Y. R. , Xue Y. , Boone A. , de Sales F. , Neupane N. , Huang M. , and Yoon J. H. , 2014: Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model. Climate Dyn., 43, 27652775, doi:10.1007/s00382-014-2092-x.

    • Search Google Scholar
    • Export Citation
  • Harris, I., Jones P. D. , Osborn T. J. , and Lister D. H. , 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Dudhia J. , and Chen S.-H. , 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multi-Satellite Precipitation Analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jones, J. E., and Woodward C. S. , 2001: Preconditioning Newton–Krylov methods for variably saturated flow. Adv. Water Resour., 24, 763774, doi:10.1016/S0309-1708(00)00075-0.

    • Search Google Scholar
    • Export Citation
  • Julien, P. Y., Saghafian B. , and Ogden F. L. , 1995: Raster-based hydrologic modeling of spatially-varied surface runoff. J. Amer. Water Resour. Assoc., 31, 523536, doi:10.1111/j.1752-1688.1995.tb04039.x.

    • Search Google Scholar
    • Export Citation
  • Jung, G., Wagner S. , and Kunstmann H. , 2012: Joint climate–hydrology modeling: An impact study for the data-sparse environment of the Volta basin in West Africa. Hydrol. Res., 43, 231248, doi:10.2166/nh.2012.044.

    • Search Google Scholar
    • Export Citation
  • Jung, M., Reichstein M. , and Bondeau A. , 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, doi:10.5194/bg-6-2001-2009.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, C., Heinzeller D. , Bliefernicht J. , and Kunstmann H. , 2015: Variability of West African monsoon patterns generated by a WRF multi-physics ensemble. Climate Dyn., 45, 27332755, doi:10.1007/s00382-015-2505-5.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Mahanama S. , and Yamada T. , 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Chang Y. , and Schubert S. , 2014: A mechanism for land–atmosphere feedback involving planetary wave structures. J. Climate, 27, 92909301, doi:10.1175/JCLI-D-14-00315.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., Chen F. , Barlage M. , Ek M. B. , and Niyogi D. , 2014: Assessing impacts of integrating MODIS vegetation data in the Weather Research and Forecasting (WRF) Model coupled to two different canopy-resistance approaches. J. Appl. Meteor. Climatol., 53, 13621380, doi:10.1175/JAMC-D-13-0247.1.

    • Search Google Scholar
    • Export Citation
  • Kunstmann, H., and Jung G. , 2007: Influence of soil-moisture and land use change on precipitation in the Volta basin of West Africa. Int. J. River Basin Manage., 5, 916, doi:10.1080/15715124.2007.9635301.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., Carbone R. E. , Levizzani V. , and Tuttle J. D. , 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134, 93109, doi:10.1002/qj.194.

    • Search Google Scholar
    • Export Citation
  • Larsen, M. A. D., Refsgaard J. C. , Drews M. , Butts M. B. , Jensen K. H. , Christensen J. , and Christensen O. , 2014: Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model for a Danish catchment. Hydrol. Earth Syst. Sci., 18, 47334749, doi:10.5194/hess-18-4733-2014.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2009: AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol., 375, 313, doi:10.1016/j.jhydrol.2009.03.020.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., Verdin K. , and Jarvis A. , 2008: New global hydrography derived from spaceborne elevation data. Eos, Trans. Amer. Geophys. Union, 89, 9394, doi:10.1029/2008EO100001.

    • Search Google Scholar
    • Export Citation
  • Lohou, F., and Coauthors, 2014: Surface response to rain events throughout the West African monsoon. Atmos. Chem. Phys., 14, 38833898, doi:10.5194/acp-14-3883-2014.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., Kunstmann H. , Devaraju B. , Tourian M. J. , Sneeuw N. , and Riegger J. , 2014: Large-scale runoff from landmasses: A global assessment of the closure of the hydrological and atmospheric water balances. J. Hydrometeor., 15, 21112139, doi:10.1175/JHM-D-13-0157.1.

    • Search Google Scholar
    • Export Citation
  • Ma, L.-M., and Tan Z.-M. , 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190211, doi:10.1016/j.atmosres.2008.09.022.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., Dixon N. , Garcia-Carreras L. , Lister G. M. S. , Parker D. J. , Knippertz P. , and Birch C. , 2013: The role of moist convection in the West African monsoon system: Insights from continental-scale convection-permitting simulations. Geophys. Res. Lett., 40, 18431849, doi:10.1002/grl.50347.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., Chow F. K. , and Kollet S. J. , 2007: The groundwater–land-surface–atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv. Water Resour., 30, 24472466, doi:10.1016/j.advwatres.2007.05.018.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., Lundquist J. K. , Mirocha J. D. , Smith S. G. , Woodward C. S. , and Tompson A. F. , 2011: Development of a coupled groundwater–atmosphere model. Mon. Wea. Rev., 139, 96116, doi:10.1175/2010MWR3392.1.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Fan Y. , Weaver C. P. , Walko R. , and Robock A. , 2007: Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res., 112, D13108, doi:10.1029/2006JD008112.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., de Jeu R. A. M. , Gash J. H. , Holmes T. R. H. , and Dolman A. J. , 2011: Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci., 15, 967981, doi:10.5194/hess-15-967-2011.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Moufouma-Okia, W., and Rowell D. P. , 2009: Impact of soil moisture initialisation and lateral boundary conditions on regional climate model simulations of the West African Monsoon. Climate Dyn., 35, 213229, doi:10.1007/s00382-009-0638-0.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., Heinsch F. A. , Zhao M. , and Running S. W. , 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, doi:10.1016/j.rse.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., Zhao M. , and Running S. W. , 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, doi:10.1016/j.rse.2011.02.019.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2000: Land surface processes and Sahel climate. Rev. Geophys., 38, 117139, doi:10.1029/1999RG900014.

  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 2013, 453521, doi:10.1155/2013/453521.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor., 42, 13551368, doi:10.1175/1520-0450(2003)042<1355:VOTAOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ogden, F. L., 1997: CASC2D reference manual. Dept. of Civil and Environmental Engineering, University of Connecticut, 83 pp.

  • Pal, J. S., and Coauthors, 2007: The ICTP RegCM3 and RegCNET: Regional climate modeling for the developing world. Bull. Amer. Meteor. Soc., 88, 13951409, doi:10.1175/BAMS-88-9-1395.

    • Search Google Scholar
    • Export Citation
  • Peugeot, C., Esteves M. , Galle S. , Rajot J. L. , and Vandervaere J. P. , 1997: Runoff generation processes: Results and analysis of field data collected at the central supersite of the HAPEX-Sahel experiment. J. Hydrol., 188–189, 179202, doi:10.1016/S0022-1694(96)03159-9.

    • Search Google Scholar
    • Export Citation
  • Peugeot, C., and Coauthors, 2011: Meso-scale water cycle within the West African monsoon. Atmos. Sci. Lett., 12, 4550, doi:10.1002/asl.309.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., Thorncroft C. D. , Diedhiou A. , Lebel T. , Parker D. J. , and Polcher J. , 2006: African monsoon multidisciplinary analysis. Bull. Amer. Meteor. Soc., 87, 17391746, doi:10.1175/BAMS-87-12-1739.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Kumar S. V. , Peters-Lidard C. D. , Harisson K. , and Zhou S. , 2013: Impact of land model calibration on coupled land–atmosphere prediction. J. Hydrometeor., 14, 13731400, doi:10.1175/JHM-D-12-0127.1.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Koren V. I. , Duan Q.-Y. , Mitchell K. , and Chen F. , 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, doi:10.1029/95JD02892.

    • Search Google Scholar
    • Export Citation
  • Schättler, U., Doms G. , and Schraff C. , 2008: A description of the nonhydrostatic regional COSMO model. Part VII: User’s guide. Deutscher Wetterdienst, 194 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoUserGuide.pdf.]

  • Schenk, H. J., and Jackson R. B. , 2005: Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126, 129140, doi:10.1016/j.geoderma.2004.11.018.

    • Search Google Scholar
    • Export Citation
  • Schulla, J., and Jasper K. , 2007: Model Description WaSiM-ETH. ETH Zürich, 181 pp. [Available online at http://www.wasim.ch/downloads/doku/wasim/wasim_2007_en.pdf.]

  • Schuol, J., and Abbaspour K. C. , 2006: Calibration and uncertainty issues of a hydrologic model (SWAT) applied to West Africa. Adv. Geosci., 9, 137143, doi:10.5194/adgeo-9-137-2006.

    • Search Google Scholar
    • Export Citation
  • Schwendike, J., Kalthoff N. , and Kohler M. , 2010: The impact of mesoscale convective systems on the surface and boundary layer structure in West Africa: Case-studies from the AMMA campaign 2006. Quart. J. Roy. Meteor. Soc., 136, 566582, doi:10.1002/qj.599.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Lüthi D. , Litschi M. , and Schär C. , 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, doi:10.1038/nature05095.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Shrestha, P., Sulis M. , Masbou M. , Kollet S. , and Simmer C. , 2014: A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow. Mon. Wea. Rev., 142, 34663483, doi:10.1175/MWR-D-14-00029.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Klemp J. B. , 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Smiatek, G., Kunstmann H. , and Werhahn J. , 2012: Implementation and performance analysis of a high resolution coupled numerical weather and river runoff prediction model system for an Alpine catchment. Environ. Modell. Software, 38, 231243, doi:10.1016/j.envsoft.2012.06.001.

    • Search Google Scholar
    • Export Citation
  • Stéfanon, M., Drobinski P. , D’Andrea F. , and de Noblet-Ducoudré N. , 2012: Effects of interactive vegetation phenology on the 2003 summer heat waves. J. Geophys. Res., 117, D24103, doi:10.1029/2012JD018187.

    • Search Google Scholar
    • Export Citation
  • Steiner, A., Pal J. , Rauscher S. , Bell J. , Diffenbaugh N. , Boone A. , Sloan L. , and Giorgi F. , 2009: Land surface coupling in regional climate simulations of the West African monsoon. Climate Dyn., 33, 869892, doi:10.1007/s00382-009-0543-6.

    • Search Google Scholar
    • Export Citation
  • Strahler, A. N., 1957: Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union, 38, 913920, doi:10.1029/TR038i006p00913.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., Parker D. J. , and Harris P. P. , 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, doi:10.1029/2007GL030572.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., Gounou A. , Guichard F. , Harris P. P. , Ellis R. J. , Couvreux F. , and De Kauwe M. , 2011a: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, doi:10.1038/ngeo1173.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Coauthors, 2011b: New perspectives on land–atmosphere feedbacks from the African Monsoon Multidisciplinary Analysis. Atmos. Sci. Lett., 12, 3844, doi:10.1002/asl.336.

    • Search Google Scholar
    • Export Citation
  • Thiemig, V., Rojas R. , Zambrano-Bigiarini M. , Levizzani V. , and De Roo A. , 2012: Validation of satellite-based precipitation products over sparsely gauged African river basins. J. Hydrometeor., 13, 17601783, doi:10.1175/JHM-D-12-032.1.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M., and van Meijgaard E. , 2010: Diagnosing land–atmosphere interaction from a regional climate model simulation over West Africa. J. Hydrometeor., 11, 467481, doi:10.1175/2009JHM1173.1.

    • Search Google Scholar
    • Export Citation
  • Vieux, B. E., 2001: Distributed Hydrologic Modeling Using GIS. Kluwer Academic, 289 pp.

  • Wagner, S., Kunstmann H. , and Bárdossy A. , 2006: Model based distributed water balance monitoring of the White Volta catchment in West Africa through coupled meteorological–hydrological simulations. Adv. Geosci., 9, 3944, doi:10.5194/adgeo-9-39-2006.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39, 931944, doi:10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment: 1. Experiment description and summary intercomparisons. Global Planet. Change, 19, 115136, doi:10.1016/S0921-8181(98)00044-7.

    • Search Google Scholar
    • Export Citation
  • Xue, M., Droegemeier K. K. , and Wong V. , 2000: The Advanced Regional Prediction System (ARPS): A multi-scale non-hydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, doi:10.1007/s007030070003.

    • Search Google Scholar
    • Export Citation
  • Yamada, T. J., Kanae S. , Oki T. , and Koster R. D. , 2013: Seasonal variation of land–atmosphere coupling strength over the West African monsoon region in an atmospheric general circulation model. Hydrol. Sci. J., 58, 12761286, doi:10.1080/02626667.2013.814914.

    • Search Google Scholar
    • Export Citation
  • Yucel, I., Onen A. , Yilmaz K. K. , and Gochis D. , 2015: Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol., 523, 4966, doi:10.1016/j.jhydrol.2015.01.042.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1969 513 75
PDF Downloads 1419 362 21