Use of Four Reanalysis Datasets to Assess the Terrestrial Branch of the Water Cycle over Quebec, Canada

Florent Sabarly Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by Florent Sabarly in
Current site
Google Scholar
PubMed
Close
,
Gilles Essou Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by Gilles Essou in
Current site
Google Scholar
PubMed
Close
,
Philippe Lucas-Picher Department of Construction Engineering, École de technologie supérieure, Université du Québec, and Centre pour l'étude et la simulation du climat à l'échelle régionale, Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Quebec, Canada

Search for other papers by Philippe Lucas-Picher in
Current site
Google Scholar
PubMed
Close
,
Annie Poulin Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by Annie Poulin in
Current site
Google Scholar
PubMed
Close
, and
François Brissette Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by François Brissette in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reanalyses have the potential to provide meteorological information in areas where few or no traditional observation records are available. The terrestrial branch of the water cycle of CFSR, MERRA, ERA-Interim, and NARR is examined over Quebec, Canada, for the 1979–2008 time period. Precipitation, evaporation, runoff, and water balance are studied using observed precipitation and streamflows, according to three spatial scales: 1) the entire province of Quebec, 2) five regions derived from a climate classification, and 3) 11 river basins. The results reveal that MERRA provides a relatively closed water balance, while a significant residual was found for the other three reanalyses. MERRA and ERA-Interim seem to provide the most reliable precipitation over the province. On the other hand, precipitation from CFSR and NARR do not appear to be particularly reliable, especially over southern Quebec, as they almost systematically showed the highest and the lowest values, respectively. Moreover, the partitioning of precipitation into evaporation and runoff from MERRA and NARR does not agree with what was expected, particularly over southern, central, and eastern Quebec. Despite the weaknesses identified, the ability of reanalyses to reproduce the terrestrial water cycle of the recent past (i.e., 1979–2008) remains globally satisfactory. Nonetheless, their potential to provide reliable information must be validated by comparing reanalyses directly with weather stations, especially in remote areas.

Corresponding author address: Florent Sabarly, Dept. of Construction Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada. E-mail: florent.sabarly@gmail.com

Abstract

Reanalyses have the potential to provide meteorological information in areas where few or no traditional observation records are available. The terrestrial branch of the water cycle of CFSR, MERRA, ERA-Interim, and NARR is examined over Quebec, Canada, for the 1979–2008 time period. Precipitation, evaporation, runoff, and water balance are studied using observed precipitation and streamflows, according to three spatial scales: 1) the entire province of Quebec, 2) five regions derived from a climate classification, and 3) 11 river basins. The results reveal that MERRA provides a relatively closed water balance, while a significant residual was found for the other three reanalyses. MERRA and ERA-Interim seem to provide the most reliable precipitation over the province. On the other hand, precipitation from CFSR and NARR do not appear to be particularly reliable, especially over southern Quebec, as they almost systematically showed the highest and the lowest values, respectively. Moreover, the partitioning of precipitation into evaporation and runoff from MERRA and NARR does not agree with what was expected, particularly over southern, central, and eastern Quebec. Despite the weaknesses identified, the ability of reanalyses to reproduce the terrestrial water cycle of the recent past (i.e., 1979–2008) remains globally satisfactory. Nonetheless, their potential to provide reliable information must be validated by comparing reanalyses directly with weather stations, especially in remote areas.

Corresponding author address: Florent Sabarly, Dept. of Construction Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada. E-mail: florent.sabarly@gmail.com
Save
  • Arsenault, R., and Brissette F. P. , 2014: Continuous streamflow prediction in ungauged basins: The effects of equifinality and parameter set selection on uncertainty in regionalization approaches. Water Resour. Res., 50, 61356153, doi:10.1002/2013WR014898.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and Shukla J. , 1988: Integration of space and in situ observations to study global climate change. Bull. Amer. Meteor. Soc., 69, 11301143, doi:10.1175/1520-0477(1988)069<1130:IOSAIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Robertson F. R. , and Chen J. , 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., 2011: Masks for the Bukovsky regionalization of North America. Accessed 5 September 2014. [Available online at http://www.narccap.ucar.edu/contrib/bukovsky/.]

  • Bukovsky, M. S., and Karoly D. J. , 2007: A brief evaluation of precipitation from the North American Regional Reanalysis. J. Hydrometeor., 8, 837846, doi:10.1175/JHM595.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fisheries and Environment Canada, 1978: Water balance–derived precipitation and evapotranspiration. Accessed 14 November 2014. [Available online at http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/910100c0-4f8c-5ae8-ae87-69bf230e43cf.html.]

  • Gibson, J., 1997: ECMWF Re-Analysis Project report series: 1. ERA description. ECMWF, 84 pp.

  • Gottschalck, J., Meng J. , Rodell M. , and Houser P. , 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System land surface states. J. Hydrometeor., 6, 573598, doi:10.1175/JHM437.1.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., McKenney D. W. , Lawrence K. , Pedlar J. H. , Hopkinson R. F. , Milewska E. , and Papadopol P. , 2009: Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. J. Appl. Meteor. Climatol., 48, 725741, doi:10.1175/2008JAMC1979.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S.-K. , Hnilo J. , Fiorino M. , and Potter G. , 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kleidon, A., and Schymanski S. , 2008: Thermodynamics and optimality of the water budget on land: A review. Geophys. Res. Lett., 35, L20404, doi:10.1029/2008GL035393.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and Kunstmann H. , 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Search Google Scholar
    • Export Citation
  • Meng, J., Yang R. , Wei H. , Ek M. , Gayno G. , Xie P. , and Mitchell K. , 2012: The land surface analysis in the NCEP Climate Forecast System Reanalysis. J. Hydrometeor., 13, 16211630, doi:10.1175/JHM-D-11-090.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Natural Resources Canada, 2014: Potential evapotranspiration. Accessed 28 September 2015 [Available online at http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/a650fb95-1104-504b-a344-0fe05877b7cf.]

  • Natural Resources Canada, 2015: Annual mean total precipitation. Accessed 28 September 2015 [Available online at http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/d8fb41f0-8893-11e0-92bb-6cf049291510.]

  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Peixoto, J. P., and Oort A. H. , 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Rhynsburger, D., 1973: Analytic delineation of Thiessen polygons. Geogr. Anal., 5, 133144, doi:10.1111/j.1538-4632.1973.tb01003.x.

  • Ricketts, T. H., Dinerstein E. , Olson D. M. , and Loucks C. J. , 1999: Terrestrial Ecoregions of North America: A Conservation Assessment. Island Press, 485 pp.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Roads, J., Chen S. C. , Kanamitsu M. , and Juang H. , 1998: Vertical structure of humidity and temperature budget residuals over the Mississippi River basin. J. Geophys. Res., 103, 37413759, doi:10.1029/97JD02759.

    • Search Google Scholar
    • Export Citation
  • Roads, J., and Coauthors, 2003: GCIP water and energy budget synthesis (WEBS). J. Geophys. Res., 108, 8609, doi:10.1029/2002JD002583.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Livneh B. , and Wood E. F. , 2012: Representation of terrestrial hydrology and large-scale drought of the continental United States from the North American Regional Reanalysis. J. Hydrometeor., 13, 856876, doi:10.1175/JHM-D-11-065.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, S., McKenney D. W. , Shang J. , and Li J. , 2014: A national-scale assessment of long-term water budget closures for Canada’s watersheds. J. Geophys. Res. Atmos., 119, 87128725, doi:10.1002/2014JD021951.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Kumar A. , and Wang W. , 2012: Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR). J. Geophys. Res., 117, D08105, doi:10.1029/2011JD017347.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 61 4
PDF Downloads 188 49 2