On the Land–Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models

Toshi Matsui Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Toshi Matsui in
Current site
Google Scholar
PubMed
Close
,
Jiun-Dar Chern Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Jiun-Dar Chern in
Current site
Google Scholar
PubMed
Close
,
Wei-Kuo Tao Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Wei-Kuo Tao in
Current site
Google Scholar
PubMed
Close
,
Stephen Lang Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Stephen Lang in
Current site
Google Scholar
PubMed
Close
,
Masaki Satoh Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan

Search for other papers by Masaki Satoh in
Current site
Google Scholar
PubMed
Close
,
Tempei Hashino ** Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

Search for other papers by Tempei Hashino in
Current site
Google Scholar
PubMed
Close
, and
Takuji Kubota Earth Observing Research Center, Japan Aerospace Exploration Agency, Tsukuba, Japan

Search for other papers by Takuji Kubota in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 14-yr climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multisensor signal statistics reveals a distinct land–ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM Precipitation Radar and Microwave Imager show a large land–ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of more/larger frozen convective hydrometeors. This strong land–ocean contrast in deep convection is invariant over seasonal and multiyear time scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land–ocean statistics using the TRMM Triple-Sensor Three-Step Evaluation Framework via a satellite simulator. The models evaluated are the NASA Multiscale Modeling Framework (MMF) and the Nonhydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land–ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moister in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land–ocean contrast in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0111.s1.

Corresponding author address: Toshi Matsui, Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Code 612, Greenbelt, MD 20771. E-mail: toshihisa.matsui-1@nasa.gov

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

A 14-yr climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multisensor signal statistics reveals a distinct land–ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM Precipitation Radar and Microwave Imager show a large land–ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of more/larger frozen convective hydrometeors. This strong land–ocean contrast in deep convection is invariant over seasonal and multiyear time scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land–ocean statistics using the TRMM Triple-Sensor Three-Step Evaluation Framework via a satellite simulator. The models evaluated are the NASA Multiscale Modeling Framework (MMF) and the Nonhydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land–ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moister in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land–ocean contrast in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0111.s1.

Corresponding author address: Toshi Matsui, Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Code 612, Greenbelt, MD 20771. E-mail: toshihisa.matsui-1@nasa.gov

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Supplementary Materials

    • Supplemental Materials (DOCX 2.57 MB)
Save
  • Awaka, J., Iguchi T. , and Okamoto K. , 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. Proc. 8th URSI Commission F Open Symp., Aveiro, Portugal, International Union of Radio Science, 143146.

  • Bonan, B. G., Oleson K. W. , Vertenstein M. , Levis S. , Zeng X. , Dai Y. , Dickinson R. E. , and Yang Z.-L. , 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 31233149, doi:10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., Tuttle J. D. , Ahijevych D. A. , and Trier S. B. , 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Demott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., Satoh M. , Hagihara Y. , Kubota T. , Matsui T. , Nasuno T. , and Okamoto H. , 2013: Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. J. Geophys. Res. Atmos., 118, 72737292, doi:10.1002/jgrd.50564.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., Tian L. , Heymsfield A. J. , Li L. , and Guimond S. , 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., Satoh M. , Hagihara Y. , Miura H. , and Schmetz J. , 2010: Comparison of high-level clouds represented in a global cloud system resolving model with CALIPSO/CloudSat and geostationary satellite observations. J. Geophys. Res., 115, D00H22, doi:10.1029/2009JD012371.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., Rickenbach T. M. , Rutledge S. A. , Ciesielski P. E. , and Schubert W. H. , 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., Benmoshe N. , and Pokrovsky A. , 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, doi:10.1175/2007JAS2515.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., Krueger S. K. , Moeng C.-H. , Bogenschutz P. A. , and A Randall D. , 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1, doi:10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Wang B. , 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

    • Search Google Scholar
    • Export Citation
  • Kodama, C., Noda A. T. , and Satoh M. , 2012: An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators. J. Geophys. Res., 117, D12210, doi:10.1029/2011JD017317.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1993: A new bucket model for predicting water content in the surface model. J. Japan Soc. Hydrol. Water Res., 6, 344349, doi:10.3178/jjshwr.6.4_344.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., 1993: On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies. J. Geophys. Res., 98, 27572765, doi:10.1029/92JD02472.

    • Search Google Scholar
    • Export Citation
  • Lang, S. E., Tao W.-K. , Cifelli R. , Olson W. , Halverson J. , Rutledge S. , and Simpson J. , 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, doi:10.1175/JAS3879.1.

    • Search Google Scholar
    • Export Citation
  • Lang, S. E., Tao W.-K. , Zeng X. , and Li Y. , 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, doi:10.1175/JAS-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Lang, S. E., Tao W.-K. , Chern J.-D. , Wu D. , and Li X. , 2014: Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci., 71, 35833612, doi:10.1175/JAS-D-13-0330.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and Wu H.-T. , 2010: Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J. Climate, 23, 504518, doi:10.1175/2009JCLI2920.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., Tao W.-K. , Matsui T. , Liu C. , and Masunaga H. , 2010: Improving a spectral bin microphysical scheme using long-term TRMM satellite observations. Quart. J. Roy. Meteor. Soc., 136, 382399, doi:10.1002/qj.569.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Zipser E. J. , 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., Zipser E. J. , and Lemone M. A. , 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193, doi:10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., Rossow W. B. , Guedes R. L. , and Walker A. W. , 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, doi:10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and Houze R. A. Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981416, doi:10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., Warner T. T. , Xu M. , and Negri A. J. , 2003: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131, 799812, doi:10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and Kummerow C. , 2005: Combined radar and radiometer analysis of precipitation profiles for a parametric retrieval algorithm. J. Atmos. Oceanic Technol., 22, 909929, doi:10.1175/JTECH1751.1.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., L’Ecuyer T. S. , and Kummerow C. D. , 2005: Variability in the characteristics of precipitation systems in the tropical Pacific. Part I: Spatial structure. J. Climate, 18, 823840, doi:10.1175/JCLI-3304.1.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., Satoh M. , and Miura H. , 2008: A joint satellite and global CRM analysis of an MJO event: Model diagnosis. J. Geophys. Res., 113, D17210, doi:10.1029/2008JD009986.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., Masunaga H. , Pielke R. A. Sr., and Tao W.-K. , 2004: Impact of aerosols and atmospheric thermodynamics on cloud properties within the climate system. Geophys. Res. Lett., 31, L06109, doi:10.1029/2003GL019287.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., Zeng X. , Tao W.-K. , Masunaga H. , Olson W. S. , and Lang S. , 2009: Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multifrequency satellite simulators. J. Atmos. Oceanic Technol., 26, 12611274, doi:10.1175/2008JTECHA1168.1.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., Mocko D. , Lee M.-I. , Tao W.-K. , Suarez M. J. , and Pielke R. A. Sr., 2010: Ten-year climatology of summertime diurnal rainfall rate over the conterminous U.S. Geophys. Res. Lett., 37, L13807, doi:10.1029/2010GL044139.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2013: GPM satellite simulator over ground validation sites. Bull. Amer. Meteor. Soc., 94, 16531660, doi:10.1175/BAMS-D-12-00160.1.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2014: Introducing multisensor satellite radiance-based evaluation for regional Earth system modeling. J. Geophys. Res. Atmos., 119, 84508475, doi:10.1002/2013JD021424.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., Tao W.-K. , Munchack S. J. , Huffman G. , and Grecu M. , 2015: Satellite view of quasi-equilibrium states in tropical convection and precipitation microphysics. Geophys. Res. Lett., 42, 19591968, doi:10.1002/2015GL063261.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and List R. , 1991: The raindrop mean free path and collision rate dependence on rainrate for three-peak equilibrium and Marshall–Palmer distributions. J. Atmos. Sci., 48, 19992003, doi:10.1175/1520-0469(1991)048<1999:TRMFPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., Tao W.-K. , Chern J.-D. , Kumar S. V. , and Peters-Lidard C. , 2013: The NASA-Goddard Multi-scale Modeling Framework–Land Information System: Global land/atmosphere interaction with resolved convection. Environ. Modell. Software, 39, 103115, doi:10.1016/j.envsoft.2012.02.023.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., Waliser D. E. , Miller M. J. , Shapiro M. A. , Asrar G. R. , and Caughey J. , 2012: Multiscale convective organization and the YOTC virtual global field campaign. Bull. Amer. Meteor. Soc., 93, 11711187, doi:10.1175/BAMS-D-11-00233.1.

    • Search Google Scholar
    • Export Citation
  • Morton, B. R., Taylor G. I. , and Turner J. S. , 1956: Turbulent gravitational convection for maintained and instantaneous sources. Proc. Roy. Soc. London, A234, 123, doi:10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and Tanaka M. , 1986: Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transf., 35, 1321, doi:10.1016/0022-4073(86)90088-9.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and Henderson R. W. , 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 26402653, doi:10.1175/1520-0493(1986)114<2640:GDOMLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2013: Mesoscale Meteorological Modeling. 3rd ed., Academic Press, 760 pp.

  • Pulliainen, J., and Hallikainen M. , 2001: Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sens. Environ., 75, 7685, doi:10.1016/S0034-4257(00)00157-7.

    • Search Google Scholar
    • Export Citation
  • Robinson, F., Sherwood S. , Gerstle D. , Liu C. , and Kirshbaum D. , 2011: Exploring the land–ocean contrast in convective vigor using islands. J. Atmos. Sci., 68, 602618, doi:10.1175/2010JAS3558.1.

    • Search Google Scholar
    • Export Citation
  • Roh, W., and Satoh M. , 2014: Evaluation of precipitating hydrometeor parameterizations in a single-moment bulk microphysics scheme for deep convective systems over the tropical open ocean. J. Atmos. Sci., 71, 26542673, doi:10.1175/JAS-D-13-0252.1.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Woodley W. L. , 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, doi:10.1038/35013030.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and Hobbs P. V. , 1983: The mesosocale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder–feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saleeby, M. S., and van den Heever S. C. , 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, doi:10.1175/JAMC-D-12-0312.1.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., Matsuno T. , Tomita H. , Miura H. , Nasuno T. , and Iga S. , 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., Inoue T. , and Miura H. , 2010: Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO/CloudSat simulators. J. Geophys. Res., 115, D00H14, doi:10.1029/2009JD012247.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2014: The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, doi:10.1186/s40645-014-0018-1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and Houze R. A. Jr., 2003: The TRMM Precipitation Radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524, doi:10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., Goodman H. M. , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Wood N. B. , 2007: Properties of tropical convection observed by millimeter-wave radar systems. Mon. Wea. Rev., 135, 821842, doi:10.1175/MWR3321.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., Wood N. B. , and Pakula L. A. , 2004: On the radiative effects of dust on tropical convection. Geophys. Res. Lett., 31, L23112, doi:10.1029/2004GL021342.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 818 pp.

  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Matsui T. , 2015: Cloud-system resolving modeling and aerosols. Encyclopedia of Atmospheric Sciences, Vol. 4, 2nd ed. G. R. North, J. Pyle, and F. Zhang, Eds., Elsevier, 222–231.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137, doi:10.1007/s00703-001-0594-7.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., Li X. , Khain A. , Matsui T. , and Lang S. , 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2009: A multiscale modeling system: Developments, applications, and critical issues. Bull. Amer. Meteor. Soc., 90, 515534, doi:10.1175/2008BAMS2542.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., Chen J.-P. , Li Z. , Wang C. , and Zhang C. , 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2014: The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmos. Res., 143, 392424, doi:10.1016/j.atmosres.2014.03.005.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., Wu D. , Lang S. , Chern J.-D. , Peters-Lidard C. , Fridlind A. , and Matsui T. , 2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, 12781305, doi:10.1002/2015JD023986.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008: New microphysics with five and six categories with diagnostic generation of cloud ice. J. Meteor. Soc. Japan, 86A, 121142, doi:10.2151/jmsj.86A.121.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and Satoh M. , 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400, doi:10.1016/j.fluiddyn.2004.03.003.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 1389113918, doi:10.1002/2013JD021371.

    • Search Google Scholar
    • Export Citation
  • Wall, C., Liu C. , and Zipser E. , 2013: A climatology of tropical congestus using CloudSat. J. Geophys. Res. Atmos., 118, 64786492, doi:10.1002/jgrd.50455.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., Adler R. F. , Huffman G. J. , and Bolvin D. , 2014: An updated TRMM composite climatology of tropical rainfall and its validation. J. Climate, 27, 273284, doi:10.1175/JCLI-D-13-00331.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Renno N. , 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 2136, doi:10.1175/1520-0493(1993)121<0021:AAOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Stanfill S. , 2002: The physical origin of the land–ocean contrast in lightning activity. C. R. Phys., 3, 12771292, doi:10.1016/S1631-0705(02)01407-X.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 80828101, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Williams, E., Chan T. , and Boccippio D. , 2004: Islands as miniature continents: Another look at the land–ocean lightning contrast. J. Geophys. Res., 109, D16206, doi:10.1029/2003JD003833.

    • Search Google Scholar
    • Export Citation
  • Williams, E., Mushtak V. , Rosenfeld D. , Goodman S. , and Boccippio D. , 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306, doi:10.1016/j.atmosres.2004.11.009.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and Houze R. A. Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., Liu C. , Cecil D. J. , Nesbitt S. W. , and Yorty D. P. , 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1245 624 207
PDF Downloads 587 151 9