Attribution of Runoff Decline in the Amu Darya River in Central Asia during 1951–2007

Xiaolei Wang Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaolei Wang in
Current site
Google Scholar
PubMed
Close
,
Yi Luo Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China

Search for other papers by Yi Luo in
Current site
Google Scholar
PubMed
Close
,
Lin Sun Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lin Sun in
Current site
Google Scholar
PubMed
Close
,
Chansheng He Department of Geography, Western Michigan University, Kalamazoo, Michigan

Search for other papers by Chansheng He in
Current site
Google Scholar
PubMed
Close
,
Yiqing Zhang Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yiqing Zhang in
Current site
Google Scholar
PubMed
Close
, and
Shiyin Liu ** Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

Search for other papers by Shiyin Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Runoff in the Amu Darya River (ADR) in central Asia has been declining steadily since the 1950s. The reasons for this decline are ambiguous, requiring a complete analysis of glaciohydrological processes across the entire data-scarce source region. In this study, grid databases of precipitation from the Asian Precipitation–Highly Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE) and temperature from Princeton’s Global Meteorological Forcing Dataset (PGMFD) are used to force the distributed, glacier-enhanced Soil and Water Assessment Tool (SWAT) model to simulate glaciohydrological processes for 1951–2007 so as to determine long-term streamflow changes and the primary driving factors in the source region of the ADR. The study suggests that the database was a suitable proxy for temperature and precipitation forcing in simulating glaciohydrological processes in the data-scarce alpine catchment region. The estimated annual streamflow of 72.6 km3 in the upper ADR had a decreasing trend for the period from 1951 to 2007. Change in precipitation, rather than in temperature, dominated the decline in streamflow in either the tributaries or mainstream of the ADR. The streamflow decreased by 15.5% because of the decline in precipitation but only increased by 0.2% as a result of the increase in temperature. Thus, warming temperature had much less effect than declining precipitation on streamflow decline in the ADR in central Asia in 1951–2007.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0114.s1.

Corresponding author address: Yi Luo, Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, 100101 Beijing, China. E-mail: luoyi@igsnrr.ac.cn

Abstract

Runoff in the Amu Darya River (ADR) in central Asia has been declining steadily since the 1950s. The reasons for this decline are ambiguous, requiring a complete analysis of glaciohydrological processes across the entire data-scarce source region. In this study, grid databases of precipitation from the Asian Precipitation–Highly Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE) and temperature from Princeton’s Global Meteorological Forcing Dataset (PGMFD) are used to force the distributed, glacier-enhanced Soil and Water Assessment Tool (SWAT) model to simulate glaciohydrological processes for 1951–2007 so as to determine long-term streamflow changes and the primary driving factors in the source region of the ADR. The study suggests that the database was a suitable proxy for temperature and precipitation forcing in simulating glaciohydrological processes in the data-scarce alpine catchment region. The estimated annual streamflow of 72.6 km3 in the upper ADR had a decreasing trend for the period from 1951 to 2007. Change in precipitation, rather than in temperature, dominated the decline in streamflow in either the tributaries or mainstream of the ADR. The streamflow decreased by 15.5% because of the decline in precipitation but only increased by 0.2% as a result of the increase in temperature. Thus, warming temperature had much less effect than declining precipitation on streamflow decline in the ADR in central Asia in 1951–2007.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0114.s1.

Corresponding author address: Yi Luo, Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, 100101 Beijing, China. E-mail: luoyi@igsnrr.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 5.39 MB)
Save
  • Agal’tseva, N., Bolgov M. , Spektorman T. Y. , Trubetskova M. , and Chub V. , 2011: Estimating hydrological characteristics in the Amu Darya River basin under climate change conditions. Russ. Meteor. Hydrol., 36, 681689, doi:10.3103/S1068373911100062.

    • Search Google Scholar
    • Export Citation
  • Aizen, V. B., Aizen E. M. , Melack J. M. , and Dozier J. , 1997: Climatic and hydrologic changes in the Tien Shan, central Asia. J. Climate, 10, 13931404, doi:10.1175/1520-0442(1997)010<1393:CAHCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arnold, J. G., and Coauthors, 2012: SWAT: Model use, calibration, and validation. Trans. ASABE, 55, 14911508, doi:10.13031/2013.42256.

    • Search Google Scholar
    • Export Citation
  • Bahr, D. B., Pfeffer W. T. , and Kaser G. , 2015: A review of volume-area scaling of glaciers. Rev. Geophys., 53, 95140, doi:10.1002/2014RG000470.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., Adam J. C. , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Bouraoui, F., Grizzetti B. , Granlund K. , Rekolainen S. , and Bidoglio G. , 2004: Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Climatic Change, 66, 109126, doi:10.1023/B:CLIM.0000043147.09365.e3.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and Ohmura A. , 1990: Estimation of alpine glacier water resources and their change since the 1870s. IAHS Publ., 193, 127135.

    • Search Google Scholar
    • Export Citation
  • Chevallier, P., Pouyaud B. , Mojaisky M. , Bolgov M. , Olsson O. , Bauer M. , and Froebrich J. , 2014: River flow regime and snow cover of the Pamir Alay (central Asia) in a changing climate. Hydrol. Sci. J., 59, 14911506, doi:10.1080/02626667.2013.838004.

    • Search Google Scholar
    • Export Citation
  • Froebrich, J., and Kayumov O. , 2004: Water management aspects of Amu Darya. Dying and Dead Seas: Climatic Versus Anthropic Causes, J. J. Nihoul, P. Zavialov, and P. Micklin, Eds., Springer, 49–76.

  • Gan, R., Luo Y. , Zuo Q. , and Sun L. , 2015: Effects of projected climate change on the glacier and runoff generation in the Naryn River basin, central Asia. J. Hydrol., 523, 240251, doi:10.1016/j.jhydrol.2015.01.057.

    • Search Google Scholar
    • Export Citation
  • Gassman, P. W., Reyes M. R. , Green C. H. , and Arnold J. G. , 2007: The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE, 50, 12111250, doi:10.13031/2013.23637.

    • Search Google Scholar
    • Export Citation
  • Geza, M., Poeter E. P. , and McCray J. E. , 2009: Quantifying predictive uncertainty for a mountain-watershed model. J. Hydrol., 376, 170181, doi:10.1016/j.jhydrol.2009.07.025.

    • Search Google Scholar
    • Export Citation
  • Giese, E., Mossig I. , Rybski D. , and Bunde A. , 2007: Long-term analysis of air temperature trends in central Asia. Erdkunde, 61, 186202, doi:10.3112/erdkunde.2007.02.05.

    • Search Google Scholar
    • Export Citation
  • Gilbert, R. O., 1987: Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons, 320 pp.

  • Hagg, W., Braun L. N. , Kuhn M. , and Nesgaard T. I. , 2007: Modelling of hydrological response to climate change in glacierized central Asian catchments. J. Hydrol., 332, 4053, doi:10.1016/j.jhydrol.2006.06.021.

    • Search Google Scholar
    • Export Citation
  • Hagg, W., Hoelzle M. , Wagner S. , Mayr E. , and Klose Z. , 2013: Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Global Planet. Change, 110, 6273, doi:10.1016/j.gloplacha.2013.05.005.

    • Search Google Scholar
    • Export Citation
  • Hirsch, R. M., Slack J. R. , and Smith R. A. , 1982: Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18, 107121, doi:10.1029/WR018i001p00107.

    • Search Google Scholar
    • Export Citation
  • Hirsch, R. M., Alexander R. B. , and Smith R. A. , 1991: Selection of methods for the detection and estimation of trends in water quality. Water Resour. Res., 27, 803813, doi:10.1029/91WR00259.

    • Search Google Scholar
    • Export Citation
  • Hu, Z. Y., Zhang C. , Hu Q. , and Tian H. Q. , 2014: Temperature changes in central Asia from 1979 to 2011 based on multiple datasets. J. Climate, 27, 11431167, doi:10.1175/JCLI-D-13-00064.1.

    • Search Google Scholar
    • Export Citation
  • IHP, 1999: World water resources and their use: A joint SHI/UNESCO product. International Hydrological Programme, accessed 1 October 2013. [Available online at http://hydrologie.org/DON/html/.]

  • Immerzeel, W. W., van Beek L. P. H. , and Bierkens M. F. P. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, doi:10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., van Beek L. P. H. , Konz M. , Shrestha A. B. , and Bierkens M. F. P. , 2012: Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110, 721736, doi:10.1007/s10584-011-0143-4.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., Pellicciotti F. , and Bierkens M. F. P. , 2013: Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci., 6, 742745, doi:10.1038/ngeo1896.

    • Search Google Scholar
    • Export Citation
  • Kapnick, S. B., Delworth T. L. , Ashfaq M. , Malyshev S. , and Milly P. C. D. , 2014: Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci., 7, 834840, doi:10.1038/ngeo2269.

    • Search Google Scholar
    • Export Citation
  • Konovalov, V. G., 2011: Past and prospective changes in the state of central Asian glaciers. Ice Snow, 3 (115), 115.

  • Konovalov, V. G., and Shchetinnicov A. S. , 1994: Evolution of glaciation in the Pamiro–Alai Mountains and its effect on river run-off. J. Glaciol., 40 (134), 149157.

    • Search Google Scholar
    • Export Citation
  • Kotlyakov, V. M., and Krenke A. N. , 1982: Investigations of the hydrological conditions of alpine regions by glaciological methods. IAHS Publ., 138, 3142.

    • Search Google Scholar
    • Export Citation
  • Kure, S., Jang S. , Ohara N. , Kavvas M. L. , and Chen Z. Q. , 2013: Hydrologic impact of regional climate change for the snowfed and glacierfed river basins in the Republic of Tajikistan: Hydrological response of flow to climate change. Hydrol. Processes, 27, 40574070, doi:10.1002/hyp.9535.

    • Search Google Scholar
    • Export Citation
  • Li, L. H., Shang M. , Zhang M. S. , Ahmad S. , and Huang Y. , 2014: Snowmelt runoff simulation driven by APHRODITE precipitation dataset. Shuikexue Jinzhan, 25 (1), 5359.

    • Search Google Scholar
    • Export Citation
  • Liu, S. Y., Sun W. X. , and Shen Y. P. , 2003: Glacier change since the little ice age maximum in the western Qilian Mountains, northwest China. J. Glaciol., 49, 117124, doi:10.3189/172756503781830926.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Arnold J. , Allen P. , and Chen X. , 2012: Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, northwest China. Hydrol. Earth Syst. Sci., 16, doi:10.5194/hess-16-1259-2012.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Arnold J. , Liu S. , Wang X. , and Chen X. , 2013: Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. J. Hydrol., 477, 7285, doi:10.1016/j.jhydrol.2012.11.005.

    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., Immerzeel W. W. , Gobiet A. , Pellicciotti F. , and Bierkens M. F. P. , 2013: Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for central Asian glaciers. Hydrol. Earth Syst. Sci., 17, 36613677, doi:10.5194/hess-17-3661-2013.

    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., Immerzeel W. W. , Shrestha A. B. , and Bierkens M. F. P. , 2014: Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Climate Change, 4, 587592, doi:10.1038/nclimate2237.

    • Search Google Scholar
    • Export Citation
  • Ma, C., Sun L. , Liu S. , Shao M. a. , and Luo Y. , 2015: Impact of climate change on the streamflow in the glacierized Chu River basin, central Asia. J. Arid Land, 7, 501513, doi:10.1007/s40333-015-0041-0.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D., Arnold J. , Van Liew M. , Bingner R. , Harmel R. , and Veith T. , 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, doi:10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Neitsch, S. L., Arnold J. G. , Kiniry J. R. , and Williams J. R. , 2011: Soil and water assessment tool theoretical documentation, version 2009. Rep. TR-406, Texas Water Resources Institute, 618 pp.

  • Nezlin, N. P., Kostianoy A. G. , and Lebedev S. A. , 2004: Interannual variations of the discharge of Amu Darya and Syr Darya estimated from global atmospheric precipitation. J. Mar. Syst., 47, 6775, doi:10.1016/j.jmarsys.2003.12.009.

    • Search Google Scholar
    • Export Citation
  • Olsson, O., Gassmann M. , Wegerich K. , and Bauer M. , 2010: Identification of the effective water availability from streamflows in the Zerafshan River basin, central Asia. J. Hydrol., 390, 190197, doi:10.1016/j.jhydrol.2010.06.042.

    • Search Google Scholar
    • Export Citation
  • Ragettli, S., Pellicciotti F. , Bordoy R. , and Immerzeel W. W. , 2013: Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resour. Res., 49, 60486066, doi:10.1002/wrcr.20450.

    • Search Google Scholar
    • Export Citation
  • Ryu, J. H., Lee J. H. , Jeong S. , Park S. K. , and Han K. , 2011: The impacts of climate change on local hydrology and low flow frequency in the Geum River basin, Korea. Hydrol. Processes, 25, 34373447, doi:10.1002/hyp.8072.

    • Search Google Scholar
    • Export Citation
  • Savitskiy, A. G., Schlüter M. , Taryannikova R. V. , Agaltseva N. A. , and Chub V. E. , 2008: Current and future impacts of climate change on river runoff in the central Asian river basins. Adaptive and Integrated Water Management, C. Pahl-Wostl, P. Kabat, and G. J. Mölgen, Eds., Springer, 323–339, doi:10.1007/978-3-540-75941-6_17.

  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Siegfried, T., Bernauer T. , Guiennet R. , Sellars S. , Robertson A. W. , Mankin J. , Bauer-Gottwein P. , and Yakovlev A. , 2012: Will climate change exacerbate water stress in central Asia? Climatic Change, 112, 881899, doi:10.1007/s10584-011-0253-z.

    • Search Google Scholar
    • Export Citation
  • Sorg, A., Bolch T. , Stoffel M. , Solomina O. , and Beniston M. , 2012: Climate change impacts on glaciers and runoff in Tien Shan (central Asia). Nat. Climate Change, 2, 725731, doi:10.1038/nclimate1592.

    • Search Google Scholar
    • Export Citation
  • Sorg, A., Huss M. , Rohrer M. , and Stoffel M. , 2014: The days of plenty might soon be over in glacierized central Asian catchments. Environ. Res. Lett., 9, doi:10.1088/1748-9326/9/10/104018.

    • Search Google Scholar
    • Export Citation
  • Stulina, G., and Eshchanov O. , 2013: Climate change impacts on hydrology and environment in the Pre-Aral region. Quat. Int., 311, 8796, doi:10.1016/j.quaint.2013.07.015.

    • Search Google Scholar
    • Export Citation
  • Unger-Shayesteh, K., Vorogushyn S. , Farinotti D. , Gafurov A. , Duethmann D. , Mandychev A. , and Merz B. , 2013: What do we know about past changes in the water cycle of central Asian headwaters? A review. Global Planet. Change, 110, 425, doi:10.1016/j.gloplacha.2013.02.004.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Luo Y. , Sun L. , and Zhang Y. , 2015: Assessing the effects of precipitation and temperature changes on hydrological processes in a glacier-dominated catchment. Hydrol. Processes, 29, 48304845, doi:10.1002/hyp.10538.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., Kamiguchi K. , Arakawa O. , Hamada A. , Yasutomi N. , and Kitoh A. , 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Zonn, I. S., 2012: Karakum Canal: Artificial river in a desert. The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan, I. S. Zonn and A. G. Kostianoy, Eds., Handbook of Environmental Chemistry, Vol. 28, Springer, 95–106 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 912 319 53
PDF Downloads 706 248 36