A Prototype Precipitation Retrieval Algorithm over Land for ATMS

Yalei You Earth System Science Interdisciplinary Center, and Cooperative Institute for Climate and Satellites, University of Maryland, College Park, College Park, Maryland

Search for other papers by Yalei You in
Current site
Google Scholar
PubMed
Close
,
Nai-Yu Wang Earth System Science Interdisciplinary Center, and Cooperative Institute for Climate and Satellites, University of Maryland, College Park, College Park, Maryland

Search for other papers by Nai-Yu Wang in
Current site
Google Scholar
PubMed
Close
,
Ralph Ferraro NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by Ralph Ferraro in
Current site
Google Scholar
PubMed
Close
, and
Patrick Meyers Earth System Science Interdisciplinary Center, and Cooperative Institute for Climate and Satellites, University of Maryland, College Park, College Park, Maryland

Search for other papers by Patrick Meyers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A prototype precipitation algorithm for the Advanced Technology Microwave Sounder (ATMS) was developed by using 3-yr coincident ground radar and ATMS observations over the continental United States (CONUS). Several major improvements to a previously published algorithm for the Special Sensor Microwave Imager/Sounder (SSMIS) include 1) considering the different footprint size of ATMS pixels, 2) calculating the uncertainty associated with the precipitation estimation, and 3) extending the algorithm to the 60°S–60°N region using only CONUS observations to construct the database. It is found that the retrieved and radar-observed rain rates agree well (e.g., correlation 0.66) and the one-standard-deviation error bar provides valuable retrieval uncertainty information. The geospatial pattern from the retrieved rain rate is largely consistent with that from radar observations. For the snowfall performance, the ATMS-retrieved results clearly capture the snowfall events over the Rocky Mountain region, while radar observations almost entirely miss the snowfall events over this region. Further, this algorithm is applied to the 60°S–60°N land region. The representative nature of rainfall over CONUS permitted the application of this algorithm to 60°S–60°N for rainfall retrieval, evidenced by the progress and retreat of the major rainbands. However, an artificially large snowfall rate is observed in several regions (e.g., Tibetan Plateau and Siberia) because of frequent false detection and overestimation caused by much colder brightness temperatures.

Corresponding author address: Yalei You, ESSIC, University of Maryland, College Park, 5825 Research Court, College Park, MD 20740. E-mail: yyou@umd.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

A prototype precipitation algorithm for the Advanced Technology Microwave Sounder (ATMS) was developed by using 3-yr coincident ground radar and ATMS observations over the continental United States (CONUS). Several major improvements to a previously published algorithm for the Special Sensor Microwave Imager/Sounder (SSMIS) include 1) considering the different footprint size of ATMS pixels, 2) calculating the uncertainty associated with the precipitation estimation, and 3) extending the algorithm to the 60°S–60°N region using only CONUS observations to construct the database. It is found that the retrieved and radar-observed rain rates agree well (e.g., correlation 0.66) and the one-standard-deviation error bar provides valuable retrieval uncertainty information. The geospatial pattern from the retrieved rain rate is largely consistent with that from radar observations. For the snowfall performance, the ATMS-retrieved results clearly capture the snowfall events over the Rocky Mountain region, while radar observations almost entirely miss the snowfall events over this region. Further, this algorithm is applied to the 60°S–60°N land region. The representative nature of rainfall over CONUS permitted the application of this algorithm to 60°S–60°N for rainfall retrieval, evidenced by the progress and retreat of the major rainbands. However, an artificially large snowfall rate is observed in several regions (e.g., Tibetan Plateau and Siberia) because of frequent false detection and overestimation caused by much colder brightness temperatures.

Corresponding author address: Yalei You, ESSIC, University of Maryland, College Park, 5825 Research Court, College Park, MD 20740. E-mail: yyou@umd.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save
  • Aires, F., Prigent C. , Bernardo F. , Jiménez C. , Saunders R. , and Brunel P. , 2011: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, doi:10.1002/qj.803.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and Coauthors, 2009: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, doi:10.2151/jmsj.87A.119.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., Hsu K.-L. , Sorooshian S. , Braithwaite D. K. , Knapp K. R. , Cecil L. D. , Nelson B. R. , and Prat O. P. , 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, doi:10.1175/BAMS-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • Auer, A. H., Jr., 1974: The rain versus snow threshold temperatures. Weatherwise, 27, 6767, doi:10.1080/00431672.1974.9931684.

  • Barrett, E., and Beaumont M. , 1994: Satellite rainfall monitoring: An overview. Remote Sens. Rev., 11, 2348, doi:10.1080/02757259409532257.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Nguyen H. , Lambrigtsen B. , Schreier M. , and Dang V. , 2015: Investigating the role of multi-spectral and near surface temperature and humidity data to improve precipitation detection at high latitudes. Atmos. Res., 163, 212, doi:10.1016/j.atmosres.2014.10.019.

    • Search Google Scholar
    • Export Citation
  • Boukabara, S.-A., and Coauthors, 2011: MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 32493272, doi:10.1109/TGRS.2011.2158438.

    • Search Google Scholar
    • Export Citation
  • Boukabara, S.-A., and Coauthors, 2013: A physical approach for a simultaneous retrieval of sounding, surface, hydrometeor, and cryospheric parameters from SNPP/ATMS. J. Geophys. Res. Atmos., 118, 12 60012 619, doi:10.1002/2013JD020448.

    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592, doi:10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F. W., and Staelin D. H. , 2003: AIRS/AMSU/HSB precipitation estimates. IEEE Trans. Geosci. Remote Sens., 41, 410417, doi:10.1109/TGRS.2002.808322.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Evaluation and uncertainty estimation of NOAA/NSSL next-generation National Mosaic Quantitative Precipitation Estimation product (Q2) over the continental United States. J. Hydrometeor., 14, 13081322, doi:10.1175/JHM-D-12-0150.1.

    • Search Google Scholar
    • Export Citation
  • Chiu, J. C., and Petty G. W. , 2006: Bayesian retrieval of complete posterior PDFs of oceanic rain rate from microwave observations. J. Appl. Meteor. Climatol., 45, 10731095, doi:10.1175/JAM2392.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2008: Temperature and pressure dependence of the rain–snow phase transition over land and ocean. Geophys. Res. Lett., 35, L12802, doi:10.1029/2008GL033295.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Fung I. Y. , and Del Genio A. D. , 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10, 29432962, doi:10.1175/1520-0442(1997)010<2943:SOGLPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, B., Yang K. , Qin J. , Wang L. , Chen Y. , and He X. , 2014: The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol., 513, 154163, doi:10.1016/j.jhydrol.2014.03.038.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Ruiz F. , Connor S. J. , and Ceccato P. , 2010: Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteor. Climatol., 49, 10041014, doi:10.1175/2009JAMC2260.1.

    • Search Google Scholar
    • Export Citation
  • Durre, I., Squires M. F. , Vose R. S. , Yin X. , Arguez A. , and Applequist S. , 2013: NOAA’s 1981–2010 U.S. climate normals: Monthly precipitation, snowfall, and snow depth. J. Appl. Meteor. Climatol., 52, 23772395, doi:10.1175/JAMC-D-13-051.1.

    • Search Google Scholar
    • Export Citation
  • Ebtehaj, A. M., Bras R. L. , and Foufoula-Georgiou E. , 2015: Shrunken locally linear embedding for passive microwave retrieval of precipitation. IEEE Trans. Geosci. Remote Sens., 53, 37203736, doi:10.1109/TGRS.2014.2382436.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., Turk J. , Wong T. , and Stephens G. L. , 1995: A Bayesian approach to microwave precipitation profile retrieval. J. Appl. Meteor., 34, 260279, doi:10.1175/1520-0450-34.1.260.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., Walter S. J. , Heymsfield A. J. , and McFarquhar G. M. , 2002: Submillimeter-wave cloud ice radiometer: Simulations of retrieval algorithm performance. J. Geophys. Res., 107, 4028, doi:10.1029/2001JD000709.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Marks G. F. , 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12, 755770, doi:10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Weng F. , Grody N. C. , and Zhao L. , 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27, 26692672, doi:10.1029/2000GL011665.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the Advanced Microwave Sounding Unit. IEEE Trans. Geosci. Remote Sens., 43, 10361049, doi:10.1109/TGRS.2004.843249.

    • Search Google Scholar
    • Export Citation
  • Fisher, B., and Wolff D. B. , 2011: Satellite sampling and retrieval errors in regional monthly rain estimates from TMI, AMSR-E, SSM/I, AMSU-B, and the TRMM PR. J. Appl. Meteor. Climatol., 50, 9941023, doi:10.1175/2010JAMC2487.1.

    • Search Google Scholar
    • Export Citation
  • Gopalan, K., Wang N.-Y. , Ferraro R. , and Liu C. , 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, doi:10.1175/2010JTECHA1454.1.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435, doi:10.1029/91JD00045.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1993: Remote sensing of the atmosphere from satellites using microwave radiometry. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., Wiley Series in Remote Sensing and Image Processing, Vol. 6, Wiley, 259–334.

  • Grody, N. C., Zhao J. , Ferraro R. , Weng F. , and Boers R. , 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res., 106, 29432953, doi:10.1029/2000JD900616.

    • Search Google Scholar
    • Export Citation
  • Hastings, D. A., and Dunbar P. , 1998: Development and assessment of the Global Land One-km Base Elevation Digital Elevation Model (GLOBE). Proc. Int. Society of Photogrammetry and Remote Sensing Commission IV Symp., Stuttgart, Germany, ISPRS, 218–221.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Islam, T., Srivastava P. K. , Dai Q. , Gupta M. , and Zhuo L. , 2015: Rain rate retrieval algorithm for conical-scanning microwave imagers aided by random forest, RReliefF, and Multivariate Adaptive Regression Splines (RAMARS). IEEE Sens. J., 15, 21862193, doi:10.1109/JSEN.2014.2372814.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and Levizzani V. , 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, doi:10.5194/hess-15-1109-2011.

    • Search Google Scholar
    • Export Citation
  • Kim, E., Lyu C.-H. J. , Anderson K. , V. Leslie R. , and Blackwell W. J. , 2014: S-NPP ATMS instrument prelaunch and on-orbit performance evaluation. J. Geophys. Res. Atmos., 119, 56535670, doi:10.1002/2013JD020483.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., Weinman J. , Olson W. , Chang D.-E. , Skofronick-Jackson G. , and Wang J. , 2008: A physical model to estimate snowfall over land using AMSU-B observations. J. Geophys. Res., 113, D09201, doi:10.1029/2007JD008589.

    • Search Google Scholar
    • Export Citation
  • Kongoli, C., Pellegrino P. , Ferraro R. R. , Grody N. C. , and Meng H. , 2003: A new snowfall detection algorithm over land using measurements from the Advanced Microwave Sounding Unit (AMSU). Geophys. Res. Lett., 30, 1756, doi:10.1029/2003GL017177.

    • Search Google Scholar
    • Export Citation
  • Kongoli, C., Meng H. , Dong J. , and Ferraro R. , 2015: A snowfall detection algorithm over land utilizing high-frequency passive microwave measurements—Application to ATMS. J. Geophys. Res. Atmos., 120, 19181932, doi:10.1002/2014JD022427.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Olson W. S. , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, doi:10.1109/36.536538.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Randel D. L. , Kulie M. , Wang N.-Y. , Ferraro R. , Joseph Munchak S. , and Petkovic V. , 2015: The evolution of the Goddard Profiling Algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, doi:10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Laviola, S., and Levizzani V. , 2011: The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design. Atmos. Res., 99, 443461, doi:10.1016/j.atmosres.2010.11.013.

    • Search Google Scholar
    • Export Citation
  • Laviola, S., Levizzani V. , Cattani E. , and Kidd C. , 2013: The 183-WSL fast rain rate retrieval algorithm. Part II: Validation using ground radar measurements. Atmos. Res., 134, 7786, doi:10.1016/j.atmosres.2013.07.013.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and Hou A. Y. , 2008: Evaluation of coincident passive microwave rainfall estimates using TRMM PR and ground measurements as references. J. Appl. Meteor. Climatol., 47, 31703187, doi:10.1175/2008JAMC1893.1.

    • Search Google Scholar
    • Export Citation
  • Linden, R., Fink A. H. , and Redl R. , 2015: Satellite-based climatology of low-level continental clouds in southern West Africa during the summer monsoon season. J. Geophys. Res. Atmos., 120, 11861201, doi:10.1002/2014JD022614.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and Curry J. A. , 1992: Retrieval of precipitation from satellite microwave measurement using both emission and scattering. J. Geophys. Res., 97, 99599974, doi:10.1029/92JD00289.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and Seo E.-K. , 2013: Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach. J. Geophys. Res. Atmos., 118, 13761387, doi:10.1002/jgrd.50172.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and Ferraro R. R. , 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • Moradi, I., Soden B. , Ferraro R. , Arkin P. , and Vömel H. , 2013: Assessing the quality of humidity measurements from global operational radiosonde sensors. J. Geophys. Res. Atmos., 118, 80408053, doi:10.1002/jgrd.50589.

    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., Liu G. , Seo E.-K. , Wang J. R. , and Aonashi K. , 2006: Development of a snowfall retrieval algorithm at high microwave frequencies. J. Geophys. Res., 111, D22216, doi:10.1029/2005JD006826.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part II: Algorithm implementation. Meteor. Atmos. Phys., 54, 101121, doi:10.1007/BF01030054.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1995: The status of satellite-based rainfall estimation over land. Remote Sens. Environ., 51, 125137, doi:10.1016/0034-4257(94)00070-4.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Li K. , 2013: Improved passive microwave retrievals of rain rate over land and ocean. Part II: Validation and intercomparison. J. Atmos. Oceanic Technol., 30, 25092526, doi:10.1175/JTECH-D-12-00184.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, S., Pellegrino P. , Ferraro R. , and Zhao L. , 2005: The improved AMSU rain-rate algorithm and its evaluation for a cool season event in the western United States. Wea. Forecasting, 20, 761774, doi:10.1175/WAF880.1.

    • Search Google Scholar
    • Export Citation
  • Sanò, P., Casella D. , Mugnai A. , Schiavon G. , Smith E. A. , and Tripoli G. J. , 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part 1. Algorithm description and testing. IEEE Trans. Geosci. Remote Sens., 51, 41194143, doi:10.1109/TGRS.2012.2227332.

    • Search Google Scholar
    • Export Citation
  • Sanò, P., Panegrossi G. , Casella D. , Di Paola F. , Milani L. , Mugnai A. , Petracca M. , and Dietrich S. , 2015: The Passive Microwave Neural Network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: Description and application to European case studies. Atmos. Meas. Tech., 8, 837857, doi:10.5194/amt-8-837-2015.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Becker A. , Finger P. , Meyer-Christoffer A. , Ziese M. , and Rudolf B. , 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Seo, E.-K., and Liu G. , 2005: Retrievals of cloud ice water path by combining ground cloud radar and satellite high-frequency microwave measurements near the ARM SGP site. J. Geophys. Res., 110, D14203, doi:10.1029/2004JD005727.

    • Search Google Scholar
    • Export Citation
  • Seo, E.-K., Liu G. , and Kim K.-Y. , 2007: A note on systematic errors in Bayesian retrieval algorithms. J. Meteor. Soc. Japan, 85, 6974, doi:10.2151/jmsj.85.69.

    • Search Google Scholar
    • Export Citation
  • Seo, E.-K., Sohn B.-J. , Liu G. , Ryu G.-H. , and Han H.-J. , 2008: Improvement of microwave rainfall retrievals in Bayesian retrieval algorithms. J. Meteor. Soc. Japan, 86, 405409, doi:10.2151/jmsj.86.405.

    • Search Google Scholar
    • Export Citation
  • Sims, E. M., and Liu G. , 2015: A parameterization of the probability of snow–rain transition. J. Hydrometeor., 16, 14661477, doi:10.1175/JHM-D-14-0211.1.

    • Search Google Scholar
    • Export Citation
  • Smith, A., Lott N. , and Vose R. , 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, doi:10.1175/2011BAMS3015.1.

    • Search Google Scholar
    • Export Citation
  • Soman, V. V., Valdés J. B. , and North G. R. , 1995: Satellite sampling and the diurnal cycle statistics of Darwin rainfall data. J. Appl. Meteor., 34, 24812490, doi:10.1175/1520-0450(1995)034<2481:SSATDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., Goodman H. M. , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Staelin, D. H., and Chen F. W. , 2000: Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans. Geosci. Remote Sens., 38, 23222332, doi:10.1109/36.868889.

    • Search Google Scholar
    • Export Citation
  • Surussavadee, C., and Staelin D. H. , 2008a: Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather prediction model, Part I: Retrieval design. IEEE Trans. Geosci. Remote Sens., 46, 99108, doi:10.1109/TGRS.2007.908302.

    • Search Google Scholar
    • Export Citation
  • Surussavadee, C., and Staelin D. H. , 2008b: Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather-prediction model, Part II: Performance evaluation. IEEE Trans. Geosci. Remote Sens., 46, 109118, doi:10.1109/TGRS.2007.908299.

    • Search Google Scholar
    • Export Citation
  • Surussavadee, C., and Staelin D. H. , 2010: NPOESS precipitation retrievals using the ATMS passive microwave spectrometer. IEEE Geosci. Remote Sens. Lett., 7, 440444, doi:10.1109/LGRS.2009.2038614.

    • Search Google Scholar
    • Export Citation
  • Tang, L., Tian Y. , and Lin X. , 2014: Validation of precipitation retrievals over land from satellite-based passive microwave sensors. J. Geophys. Res. Atmos., 119, 45464567, doi:10.1002/2013JD020933.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Haddad Z. S. , and You Y. , 2014: Principal components of multifrequency microwave land surface emissivities. Part I: Estimation under clear and precipitating conditions. J. Hydrometeor., 15, 319, doi:10.1175/JHM-D-13-08.1.

    • Search Google Scholar
    • Export Citation
  • Vila, D., Ferraro R. , and Joyce R. , 2007: Evaluation and improvement of AMSU precipitation retrievals. J. Geophys. Res., 112, D20119, doi:10.1029/2007JD008617.

    • Search Google Scholar
    • Export Citation
  • Viltard, N., Burlaud C. , and Kummerow C. D. , 2006: Rain retrieval from TMI brightness temperature measurements using a TRMM PR-based database. J. Appl. Meteor. Climatol., 45, 455466, doi:10.1175/JAM2346.1.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bull. Amer. Meteor. Soc., 95, 377386, doi:10.1175/BAMS-D-12-00162.1.

    • Search Google Scholar
    • Export Citation
  • Wagner, J., 1957: Mean temperature from 1000 mb to 500 mb as a predictor of precipitation type. Bull. Amer. Meteor. Soc., 10, 584590.

    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., Liu C. , Ferraro R. , Wolff D. , Zipser E. , and Kummerow C. , 2009: TRMM 2A12 land precipitation product-status and future plans. J. Meteor. Soc. Japan, 87A, 237253, doi:10.2151/jmsj.87A.237.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Liu G. , Seo E.-K. , and Fu Y. , 2013: Liquid water in snowing clouds: Implications for satellite remote sensing of snowfall. Atmos. Res., 131, 6072, doi:10.1016/j.atmosres.2012.06.008.

    • Search Google Scholar
    • Export Citation
  • Weng, F., Zhao L. , Ferraro R. R. , Poe G. , Li X. , and Grody N. C. , 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38, 8068, doi:10.1029/2002RS002679.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and Fisher B. L. , 2009: Assessing the relative performance of microwave-based satellite rain-rate retrievals using TRMM ground validation data. J. Appl. Meteor. Climatol., 48, 10691099, doi:10.1175/2008JAMC2127.1.

    • Search Google Scholar
    • Export Citation
  • Wu, W., Kitzmiller D. , and Wu S. , 2012: Evaluation of radar precipitation estimates from the National Mosaic and Multisensor Quantitative Precipitation Estimation system and the WSR-88D precipitation processing system over the conterminous United States. J. Hydrometeor., 13, 10801093, doi:10.1175/JHM-D-11-064.1.

    • Search Google Scholar
    • Export Citation
  • Yang, W., Meng H. , Ferraro R. R. , Moradi I. , and Devaraj C. , 2013: Cross-scan asymmetry of AMSU-A window channels: Characterization, correction, and verification. IEEE Trans. Geosci. Remote Sens., 51, 15141530, doi:10.1109/TGRS.2012.2211884.

    • Search Google Scholar
    • Export Citation
  • Ye, H., Cohen J. , and Rawlins M. , 2013: Discrimination of solid from liquid precipitation over northern Eurasia using surface atmospheric conditions. J. Hydrometeor., 14, 13451355, doi:10.1175/JHM-D-12-0164.1.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Liu D. , Gourley J. J. , Tian Y. , Huffman G. J. , Ren L. , and Hong Y. , 2015: Global view of real-time TRMM Multisatellite Precipitation Analysis: Implications for its successor Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 96, 283296, doi:10.1175/BAMS-D-14-00017.1.

    • Search Google Scholar
    • Export Citation
  • You, Y., and Liu G. , 2012: The relationship between surface rainrate and water paths and its implications to satellite rainrate retrieval. J. Geophys. Res., 117, D13207, doi:10.1029/2012JD017662.

    • Search Google Scholar
    • Export Citation
  • You, Y., Liu G. , Wang Y. , and Cao J. , 2011: On the sensitivity of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager channels to overland rainfall. J. Geophys. Res., 116, D12203, doi:10.1029/2010JD015345.

    • Search Google Scholar
    • Export Citation
  • You, Y., Wang N.-Y. , and Ferraro R. , 2015: A prototype precipitation retrieval algorithm over land using passive microwave observations stratified by surface condition and precipitation vertical structure. J. Geophys. Res. Atmos., 120, 52955315, doi:10.1002/2014JD022534.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Qi Y. , Howard K. , Langston C. , and Kaney B. , 2011a: Radar quality index (RQI): A combined measure of beam blockage and VPR effects in a national network. IAHS Publ., 351, 388393.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011b: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 282 127 10
PDF Downloads 170 60 8