Evaluating Four Multisatellite Precipitation Estimates over the Diaoyu Islands during Typhoon Seasons

Bin Yong * State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
School of Earth Sciences and Engineering, Hohai University, Nanjing, China,

Search for other papers by Bin Yong in
Current site
Google Scholar
PubMed
Close
,
Jingjing Wang School of Earth Sciences and Engineering, Hohai University, Nanjing, China,

Search for other papers by Jingjing Wang in
Current site
Google Scholar
PubMed
Close
,
Liliang Ren * State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

Search for other papers by Liliang Ren in
Current site
Google Scholar
PubMed
Close
,
Yalei You Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Yalei You in
Current site
Google Scholar
PubMed
Close
,
Pingping Xie NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Pingping Xie in
Current site
Google Scholar
PubMed
Close
, and
Yang Hong School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yang Hong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Diaoyu Islands are a group of uninhabited islets located in the East China Sea between Japan, China, and Taiwan. Here, four mainstream gauge-adjusted multisatellite precipitation estimates [TRMM Multisatellite Precipitation Analysis, version 7 (TMPA-V7); CPC morphing technique–bias-corrected product (CMORPH-CRT); Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR); and Global Satellite Mapping of Precipitation–gauge adjusted (GSMaP_Gauge)] are adopted to detect the rainfall characteristics of the Diaoyu Islands area with a particular focus on typhoon contribution. Out of the four products, CMORPH-CRT and GSMaP_Gauge show much more similarity both in terms of the spatial patterns and error structures because of their use of the same morphing technique. Overall, GSMaP_Gauge performs better than the other three products, likely because of denser in situ observations integrated in its retrieval algorithms over East Asia. All rainfall products indicate that an apparent rain belt exists along the northeastern 45° direction of Taiwan extending to Kyushu of Japan, which is physically associated with the Kuroshio. The Diaoyu Islands are located on the central axis of this rain belt. During the period 2001–09, typhoon-induced rainfall accounted for 530 mm yr−1, and typhoons contributed on average approximately 30% of the annual precipitation budget over the Diaoyu Islands. Higher typhoon contribution was found over the southern warmer water of the Diaoyu Islands, while the northern cooler water presented less contribution ratio. Supertyphoon Chaba, the largest typhoon of 2004, recorded 53 h of rainfall accumulation totaling 235 mm on the Diaoyu Islands, and this event caused severe property damage and human casualties for Japan. Hence, the Diaoyu Islands play an important role in weather monitoring and forecasting for the neighboring countries and regions.

Corresponding author address: Bin Yong, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Xikang Road 1, Nanjing 210098, China. E-mail: yongbin_hhu@126.com; rll@hhu.edu.cn

Abstract

The Diaoyu Islands are a group of uninhabited islets located in the East China Sea between Japan, China, and Taiwan. Here, four mainstream gauge-adjusted multisatellite precipitation estimates [TRMM Multisatellite Precipitation Analysis, version 7 (TMPA-V7); CPC morphing technique–bias-corrected product (CMORPH-CRT); Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR); and Global Satellite Mapping of Precipitation–gauge adjusted (GSMaP_Gauge)] are adopted to detect the rainfall characteristics of the Diaoyu Islands area with a particular focus on typhoon contribution. Out of the four products, CMORPH-CRT and GSMaP_Gauge show much more similarity both in terms of the spatial patterns and error structures because of their use of the same morphing technique. Overall, GSMaP_Gauge performs better than the other three products, likely because of denser in situ observations integrated in its retrieval algorithms over East Asia. All rainfall products indicate that an apparent rain belt exists along the northeastern 45° direction of Taiwan extending to Kyushu of Japan, which is physically associated with the Kuroshio. The Diaoyu Islands are located on the central axis of this rain belt. During the period 2001–09, typhoon-induced rainfall accounted for 530 mm yr−1, and typhoons contributed on average approximately 30% of the annual precipitation budget over the Diaoyu Islands. Higher typhoon contribution was found over the southern warmer water of the Diaoyu Islands, while the northern cooler water presented less contribution ratio. Supertyphoon Chaba, the largest typhoon of 2004, recorded 53 h of rainfall accumulation totaling 235 mm on the Diaoyu Islands, and this event caused severe property damage and human casualties for Japan. Hence, the Diaoyu Islands play an important role in weather monitoring and forecasting for the neighboring countries and regions.

Corresponding author address: Bin Yong, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Xikang Road 1, Nanjing 210098, China. E-mail: yongbin_hhu@126.com; rll@hhu.edu.cn
Save
  • Aonashi, K., and Coauthors, 2009: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, doi:10.2151/jmsj.87A.119.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., Hsu K.-L. , Sorooshian S. , Braithwaite D. K. , Knapp K. R. , Cecil L. D. , Nelson B. R. , and Prat O. P. , 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, doi:10.1175/BAMS-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • As-syakur, A. R., Tanaka T. , Osawa T. , and Mahendra M. S. , 2013: Indonesian rainfall variability observation using TRMM multi-satellite data. Int. J. Remote Sens., 34, 77237738, doi:10.1080/01431161.2013.826837.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Khakbaz B. , Jaw T. C. , AghaKouchak A. , Hsu K. , and Sorooshian S. , 2011: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 397, 225237, doi:10.1016/j.jhydrol.2010.11.043.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., and Gebremichael M. , 2011: Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res., 47, W06526, doi:10.1029/2010WR009917.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., Gebremichael M. , Ghebremichael L. T. , and Bayissa Y. A. , 2012: Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J. Hydrometeor., 13, 338350, doi:10.1175/2011JHM1292.1.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and Fowler M. D. , 2015: The diurnal cycle of precipitation in tropical cyclones. J. Climate, 28, 53255334, doi:10.1175/JCLI-D-14-00804.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013a: Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. J. Geophys. Res. Atmos., 118, 13 06013 074, doi:10.1002/2013JD019964.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013b: Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the continental United States. Water Resour. Res., 49, 81748186, doi:10.1002/2012WR012795.

    • Search Google Scholar
    • Export Citation
  • Dare, R. E., Davidson N. E. , and McBride J. L. , 2012: Tropical cyclone contribution to rainfall over Australia. Mon. Wea. Rev., 140, 36063619, doi:10.1175/MWR-D-11-00340.1.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., and Marks G. , 1995: The development of SSM/I rain rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12, 755770, doi:10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Henschke A. , and Adler R. F. , 2009: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmos. Res., 94, 373388, doi:10.1016/j.atmosres.2009.06.015.

    • Search Google Scholar
    • Export Citation
  • Hamada, A., Tkayahu Y. , Liu C. , and Zipser E. , 2015: Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun., 6, 6213, doi:10.1038/ncomms7213.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Bolvin D. T. , 2015: Real-time TRMM Multi-Satellite Precipitation Analysis data set documentation. TRMM Rep., 48 pp. [Available online at ftp://trmmopen.gsfc.nasa.gov/pub/merged/V7Documents.]

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Gu G. , 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. T. , and Nelkin E. J. , 2015: Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.]

  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that products global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kamiguchi, K., Arakawa O. , Kitoh A. , Yatagai A. , Hamada A. , and Yasutomi N. , 2010: Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more than 100 years. Hydrol. Res. Lett., 4, 6064, doi:10.3178/hrl.4.60.

    • Search Google Scholar
    • Export Citation
  • Khan, S. I., and Coauthors, 2012: Microwave satellite data for hydrologic modeling in ungauged basins. IEEE Geosci. Remote Sens., 9, 663667, doi:10.1109/LGRS.2011.2177807.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., Shige S. , Hashizume H. , Ushio T. , Aonashi K. , Kachi M. , and Okamoto K. , 2007: Global precipitation map using satelliteborne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., Marks F. , and Chen S. , 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660, doi:10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and Ferraro R. , 2005: Microwave rainfall estimation over coasts. J. Atmos. Oceanic Technol., 22, 497512, doi:10.1175/JTECH1732.1.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., Krajewshi W. F. , Ferraro R. , and Ba M. B. , 2002: Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteor., 41, 10651080, doi:10.1175/1520-0450(2002)041<1065:EOBOSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mendelsohn, R., Emanuel K. , Chonabayashi S. , and Bakkensen L. , 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205209, doi:10.1038/nclimate1357.

    • Search Google Scholar
    • Export Citation
  • Nogueira, R. C., and Kleim B. D. , 2011: Contributions of Atlantic tropical cyclones to monthly and seasonal rainfall in the eastern United States 1960–2007. Theor. Appl. Climatol., 103, 213227, doi:10.1007/s00704-010-0292-9.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., Takahashi N. , Iwanami K. , Shige S. , and Kubota T. , 2008: High precision and high resolution global precipitation map from satellite data. Proc. MICRORAD 2008, Florence, Italy, IEEE, 1–4, doi:10.1109/MICRAD.2008.4579485.

  • O’Reilly, C. H., and Czaja A. , 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 5266, doi:10.1002/qj.2334.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and Nelson B. R. , 2013: Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM Multi-satellite Precipitation Analysis. Water Resour. Res., 49, 72367254, doi:10.1002/wrcr.20527.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., Adler R. F. , and Pierce H. F. , 2001: Contribution of tropical cyclones to the North Atlantic climatological rainfall as observed from satellite. J. Appl. Meteor., 40, 17851800, doi:10.1175/1520-0450(2001)040<1785:COTCTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romilly, T. G., and Gebremichael M. , 2011: Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci., 15, 15051514, doi:10.5194/hess-15-1505-2011.

    • Search Google Scholar
    • Export Citation
  • Sawada, K., and Handa N. , 1998: Variability of the path of the Kuroshio ocean current over the past 25,000 years. Nature, 392, 592595, doi:10.1038/33391.

    • Search Google Scholar
    • Export Citation
  • Shen, Y., and Xiong A. , 2016: Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol., 36, 252265, doi:10.1002/joc.4341.

    • Search Google Scholar
    • Export Citation
  • Shen, Y., Xiong A. , Wang Y. , and Xie P. , 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, doi:10.1029/2009JD012097.

    • Search Google Scholar
    • Export Citation
  • Smith, A., Lott N. , and Vose R. , 2011: The Integrated Surface Database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, doi:10.1175/2011BAMS3015.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stisen, S., and Sandholt I. , 2010: Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modeling. Hydrol. Processes, 24, 879891, doi:10.1002/hyp.7529.

    • Search Google Scholar
    • Export Citation
  • Su, F., Hong Y. , and Lettenmaier D. P. , 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. J. Hydrometeor., 9, 622640, doi:10.1175/2007JHM944.1.

    • Search Google Scholar
    • Export Citation
  • Tang, L., Tian Y. , and Lin X. , 2014: Validation of precipitation retrievals from satellite-based passive microwave sensors. J. Geophys. Res. Atmos., 119, 45464567, doi:10.1002/2013JD020933.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, doi:10.1016/j.atmosres.2011.10.021.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, doi:10.1029/2009JD011949.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Peters-Lidard C. D. , 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Tobin, K. J., and Bennett M. E. , 2010: Adjusting satellite precipitation data to facilitate hydrologic modeling. J. Hydrometeor., 11, 966978, doi:10.1175/2010JHM1206.1.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., Carbone R. E. , and Arkin P. A. , 2008: Comparison of ground-based radar and geosynchronous satellite climatologies of warm-season precipitation over the United States. J. Appl. Meteor., 47, 32643270, doi:10.1175/2008JAMC2000.1.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151, doi:10.2151/jmsj.87A.137.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Krajewski W. F. , 2007: Evaluation of the research version TRMM three-hourly 0.25° × 0.25° rainfall estimates over Oklahoma. Geophys. Res. Lett., 34, L05402, doi:10.1029/2006GL029147.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Goska R. , Smith J. , and Vecchi G. , 2014: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 13811388, doi:10.1175/BAMS-D-13-00060.1.

    • Search Google Scholar
    • Export Citation
  • Wu, H., Adler R. F. , Hong Y. , Tian Y. , and Policelli F. , 2012: Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeor., 13, 12681284, doi:10.1175/JHM-D-11-087.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Xiong A.-Y. , 2011: A conceptual model for constructing high-resolution gauge–satellite merged precipitation analyses. J. Geophys. Res., 116, D21106, doi:10.1029/2011JD016118.

    • Search Google Scholar
    • Export Citation
  • Xie, P., Yatagai A. , Chen M. , Hayasaka T. , Fukushima Y. , Liu C. , and Yang S. , 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, doi:10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., Kamiguchi K. , Arakawa O. , Hamada A. , Yasutomi N. , and Kitoh A. , 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Ren L.-L. , Hong Y. , Wang J.-H. , Gourley J. J. , Jiang S.-H. , Chen X. , and Wang W. , 2010: Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res., 46, W07542, doi:10.1029/2009WR008965.

    • Search Google Scholar
    • Export Citation
  • Yong, B., and Coauthors, 2013: First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes. Water Resour. Res., 49, 24612472, doi:10.1002/wrcr.20246.

    • Search Google Scholar
    • Export Citation
  • Yong, B., and Coauthors, 2014: Intercomparison of the version-6 and version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol., 508, 7787, doi:10.1016/j.jhydrol.2013.10.050.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Liu D. , Gourley J. J. , Tian Y. , Huffman G. J. , Ren L.-L. , and Hong Y. , 2015: Global view of real-time TRMM Multisatellite Precipitation Analysis: Implications for its successor global precipitation measurement mission. Bull. Amer. Meteor. Soc., 96, 283296, doi:10.1175/BAMS-D-14-00017.1.

    • Search Google Scholar
    • Export Citation
  • You, Y., and Liu G. , 2012: The relationship between surface rainrate and water paths and its implications to satellite rainrate retrieval. J. Geophys. Res., 117, D13207, doi:10.1029/2012JD017662.

    • Search Google Scholar
    • Export Citation
  • You, Y., Wang N.-Y. , and Ferraro R. , 2015: A prototype precipitation retrieval algorithm over land using passive microwave observations stratified by surface condition and precipitation vertical structure. J. Geophys. Res. Atmos., 120, 52955315, doi:10.1002/2014JD022534.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., Yu H. , Chen P. , Qian C. , and Yue C. , 2009: Verification of tropical cyclone-related satellite precipitation estimates in mainland China. J. Appl. Meteor. Climatol., 48, 22272241, doi:10.1175/2009JAMC2143.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 323 112 9
PDF Downloads 166 55 5