Can Precipitation and Temperature from Meteorological Reanalyses Be Used for Hydrological Modeling?

Gilles R. C. Essou Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by Gilles R. C. Essou in
Current site
Google Scholar
PubMed
Close
,
Florent Sabarly Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by Florent Sabarly in
Current site
Google Scholar
PubMed
Close
,
Philippe Lucas-Picher Department of Construction Engineering, École de technologie supérieure, Université du Québec, and Centre pour l’étude et la simulation du climat à l'échelle régionale, Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Quebec, Canada

Search for other papers by Philippe Lucas-Picher in
Current site
Google Scholar
PubMed
Close
,
François Brissette Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by François Brissette in
Current site
Google Scholar
PubMed
Close
, and
Annie Poulin Department of Construction Engineering, École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada

Search for other papers by Annie Poulin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper investigates the potential of reanalyses as proxies of observed surface precipitation and temperature to force hydrological models. Three global atmospheric reanalyses (ERA-Interim, CFSR, and MERRA), one regional reanalysis (NARR), and one global meteorological forcing dataset obtained by bias-correcting ERA-Interim [Water and Global Change (WATCH) Forcing Data ERA-Interim (WFDEI)] were compared to one gridded observation database over the contiguous United States. Results showed that all temperature datasets were similar to the gridded observation over most of the United States. On the other hand, precipitation from all three global reanalyses was biased, especially in summer and winter in the southeastern United States. The regional reanalysis precipitation was closer to observations since it indirectly assimilates surface precipitation. The WFDEI dataset was generally less biased than the reanalysis datasets. All datasets were then used to force a global conceptual hydrological model on 370 watersheds of the Model Parameter Estimation Experiment (MOPEX) database. River flows were computed for each watershed, and results showed that the flows simulated using NARR and gridded observations forcings were very similar to the observed flows. The simulated flows forced by the global reanalysis datasets were also similar to the observations, except in the humid continental and subtropical climatic regions, where precipitation seasonality biases degraded river flow simulations. The WFDEI dataset led to better river flows than reanalysis in the humid continental and subtropical climatic regions but was no better than reanalysis—and sometimes worse—in other climatic zones. Overall, the results indicate that global reanalyses have good potential to be used as proxies to observations to force hydrological models, especially in regions with few weather stations.

Corresponding author address: Gilles R. C. Essou, Dept. of Construction Engineering, École de technologie supérieure, Université du Québec, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada. E-mail: essougilles@yahoo.fr; gilles.essou.1@ens.etsmtl.ca

Abstract

This paper investigates the potential of reanalyses as proxies of observed surface precipitation and temperature to force hydrological models. Three global atmospheric reanalyses (ERA-Interim, CFSR, and MERRA), one regional reanalysis (NARR), and one global meteorological forcing dataset obtained by bias-correcting ERA-Interim [Water and Global Change (WATCH) Forcing Data ERA-Interim (WFDEI)] were compared to one gridded observation database over the contiguous United States. Results showed that all temperature datasets were similar to the gridded observation over most of the United States. On the other hand, precipitation from all three global reanalyses was biased, especially in summer and winter in the southeastern United States. The regional reanalysis precipitation was closer to observations since it indirectly assimilates surface precipitation. The WFDEI dataset was generally less biased than the reanalysis datasets. All datasets were then used to force a global conceptual hydrological model on 370 watersheds of the Model Parameter Estimation Experiment (MOPEX) database. River flows were computed for each watershed, and results showed that the flows simulated using NARR and gridded observations forcings were very similar to the observed flows. The simulated flows forced by the global reanalysis datasets were also similar to the observations, except in the humid continental and subtropical climatic regions, where precipitation seasonality biases degraded river flow simulations. The WFDEI dataset led to better river flows than reanalysis in the humid continental and subtropical climatic regions but was no better than reanalysis—and sometimes worse—in other climatic zones. Overall, the results indicate that global reanalyses have good potential to be used as proxies to observations to force hydrological models, especially in regions with few weather stations.

Corresponding author address: Gilles R. C. Essou, Dept. of Construction Engineering, École de technologie supérieure, Université du Québec, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada. E-mail: essougilles@yahoo.fr; gilles.essou.1@ens.etsmtl.ca
Save
  • Adam, J. C., and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Arsenault, R., and Brissette F. , 2014: Determining the optimal spatial distribution of weather station networks for hydrological modeling purposes using RCM datasets: An experimental approach. J. Hydrometeor., 15, 517526, doi:10.1175/JHM-D-13-088.1.

    • Search Google Scholar
    • Export Citation
  • Barrett, E. C., 1970: The estimation of monthly rainfall from satellite data. Mon. Wea. Rev., 98, 322327, doi:10.1175/1520-0493(1970)098<0322:TEOMRF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bastola, S., and François D. , 2012: Temporal extension of meteorological records for hydrological modelling of Lake Chad basin (Africa) using satellite rainfall data and reanalysis datasets. Meteor. Appl., 19, 5470, doi:10.1002/met.257.

    • Search Google Scholar
    • Export Citation
  • Betts, A., and Miller M. , 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air‐mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, doi:10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2013: Regional climate and variability of NASA MERRA and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteor. Climatol., 52, 19391951, doi:10.1175/JAMC-D-12-0291.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Mocko D. , Roads J. O. , and Ruane A. , 2009: A multimodel analysis for the Coordinated Enhanced Observing Period (CEOP). J. Hydrometeor., 10, 912934, doi:10.1175/2009JHM1090.1.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and Karoly D. J. , 2007: A brief evaluation of precipitation from the North American Regional Reanalysis. J. Hydrometeor., 8, 837846, doi:10.1175/JHM595.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , and Leconte R. , 2012: Downscaling of weather generator parameters to quantify hydrological impacts of climate change. Climate Res., 51, 185200, doi:10.3354/cr01062.

    • Search Google Scholar
    • Export Citation
  • Cherry, J. E., Tremblay L. , Stieglitz M. , Gong G. , and Déry S. , 2007: Development of the pan-Arctic snowfall reconstruction: New land-based solid precipitation estimates for 1940–99. J. Hydrometeor., 8, 12431263, doi:10.1175/2007JHM765.1.

    • Search Google Scholar
    • Export Citation
  • Chiew, F., Teng J. , Vaze J. , and Kirono D. , 2009: Influence of global climate model selection on runoff impact assessment. J. Hydrol., 379, 172180, doi:10.1016/j.jhydrol.2009.10.004.

    • Search Google Scholar
    • Export Citation
  • Choi, W., Kim S. J. , Rasmussen P. F. , and Moore A. R. , 2009: Use of the North American Regional Reanalysis for hydrological modelling in Manitoba. Can. Water Resour. J., 34, 1736, doi:10.4296/cwrj3401017.

    • Search Google Scholar
    • Export Citation
  • Cole, S. J., and Moore R. J. , 2009: Distributed hydrological modelling using weather radar in gauged and ungauged basins. Adv. Water Resour., 32, 11071120, doi:10.1016/j.advwatres.2009.01.006.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Taylor G. , and Gibson W. , 1997: The PRISM approach to mapping precipitation and temperature. Preprints, 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 10–12.

  • Dee, D., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., and Coauthors, 2006: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol., 320, 317, doi:10.1016/j.jhydrol.2005.07.031.

    • Search Google Scholar
    • Export Citation
  • Fortin, V., 2000: Le modèle météo-apport HSAMI: Historique, théorie et application. Institut de recherche d’Hydro-Québec, 68 pp.

  • Fuller, J. D., 2012: Alpine wind speed and blowing snow trend identification and analysis. M.S. thesis, Dept. of Ecosystem Science and Sustainability, Colorado State University, 73 pp. [Available online at https://dspace.library.colostate.edu/handle/10217/65342.]

  • Goodison, B., Louie P. , and Yang D. , 1998: WMO solid precipitation intercomparison. Instruments and Observing Methods Rep. 67, WMO/TD 872, 212 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf.]

  • Grimes, D., Pardo-Iguzquiza E. , and Bonifacio R. , 1999: Optimal areal rainfall estimation using raingauges and satellite data. J. Hydrol., 222, 93108, doi:10.1016/S0022-1694(99)00092-X.

    • Search Google Scholar
    • Export Citation
  • Hansen, N., and Ostermeier A. , 1996: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. Proc. IEEE Int. Conf. on Evolutionary Computation, Nagoya, Japan, IEEE, 312317, doi:10.1109/ICEC.1996.542381.

  • Hansen, N., and Ostermeier A. , 2001: Completely derandomized self-adaptation in evolution strategies. Evol. Comput., 9, 159195, doi:10.1162/106365601750190398.

    • Search Google Scholar
    • Export Citation
  • Harris, I., Jones P. , Osborn T. , and Lister D. , 2014: Updated high‐resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Higgins, R., Kousky V. , Silva V. , Becker E. , and Xie P. , 2010: Intercomparison of daily precipitation statistics over the United States in observations and in NCEP reanalysis products. J. Climate, 23, 46374650, doi:10.1175/2010JCLI3638.1.

    • Search Google Scholar
    • Export Citation
  • Hunter, S. M., 1996: WSR-88D radar rainfall estimation: Capabilities, limitations and potential improvements. Natl. Wea. Dig., 20, 2638.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Kniveton D. R. , Todd M. C. , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104, doi:10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kopp, T., and Kiess R. , 1996: The Air Force Global Weather Central snow analysis model. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 220–222.

  • Kottek, M., Grieser J. , Beck C. , Rudolf B. , and Rubel F. , 2006: World map of the Köppen–Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • Kouame, F. K., Kouassi A. M. , N’Guessan B. T. M. , Kouao J. M. , Lasm T. , and Saley M. B. , 2013: Analysis of trends in the rainfall–runoff relation in the context of climate change: Case of the N’zo-Sassandra watershed (western Côte d’Ivoire). Int. J. Innovation Appl. Stud., 2, 92103.

    • Search Google Scholar
    • Export Citation
  • Kralisch, S., Krause P. , Fink M. , Fischer C. , and Flügel W. , 2007: Component based environmental modelling using the JAMS framework. MODSIM 2007 International Congress on Modelling and Simulation, L. Oxley and D. Kulasiri, Eds., Modelling and Simulation Society of Australia and New Zealand, 812–818. [Available online at http://mssanz.org.au/MODSIM07/papers/14_s51/ComponentBasedEnvironmenta_s51_Kralisch_l.pdf.]

  • Langlois, A., and Coauthors, 2009: Simulation of snow water equivalent (SWE) using thermodynamic snow models in Québec, Canada. J. Hydrometeor., 10, 14471463, doi:10.1175/2009JHM1154.1.

    • Search Google Scholar
    • Export Citation
  • Li, C., Sinha E. , Horton D. E. , Diffenbaugh N. S. , and Michalak A. M. , 2014: Joint bias correction of temperature and precipitation in climate model simulations. J. Geophys. Res. Atmos., 119, 13 15313 162, doi:10.1002/2014JD022514.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., Wensnahan M. , Schweiger A. , and Zhang J. , 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and Kunstmann H. , 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Search Google Scholar
    • Export Citation
  • Manzanas, R., Amekudzi L. , Preko K. , Herrera S. , and Gutiérrez J. M. , 2014: Precipitation variability and trends in Ghana: An intercomparison of observational and reanalysis products. Climatic Change, 124, 805819, doi:10.1007/s10584-014-1100-9.

    • Search Google Scholar
    • Export Citation
  • Maurer, E., Wood A. , Adam J. , Lettenmaier D. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Minville, M., Brissette F. , and Leconte R. , 2008: Uncertainty of the impact of climate change on the hydrology of a Nordic watershed. J. Hydrol., 358, 7083, doi:10.1016/j.jhydrol.2008.05.033.

    • Search Google Scholar
    • Export Citation
  • Nash, J., and Sutcliffe J. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Jones P. , 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856, doi:10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • New, M.,Hulme M. , and Jones P. , 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ngo‐Duc, T., Polcher J. , and Laval K. , 2005: A 53‐year forcing data set for land surface models. J. Geophys. Res., 110, D06116, doi:10.1029/2004JD005434.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and Ruiz-Barradas A. , 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19, 815837, doi:10.1175/JCLI3635.1.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., and Buizza R. , 2009: The skill of ECMWF precipitation and temperature predictions in the Danube basin as forcings of hydrological models. Wea. Forecasting, 24, 749766, doi:10.1175/2008WAF2222120.1.

    • Search Google Scholar
    • Export Citation
  • Poli, P., Dee D. , Berrisford P. , and Thépaut J.-N. , 2010: Overview of satellite data assimilation in the ERA-Interim reanalysis. Proc. 2010 EUMETSAT Meteorological Satellite Conf., Cordoba, Spain, EUMETSAT, 8 pp. [Available online at http://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2042511.html.]

  • Poulin, A., Brissette F. , Leconte R. , Arsenault R. , and Malo J.-S. , 2011: Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J. Hydrol., 409, 626636, doi:10.1016/j.jhydrol.2011.08.057.

    • Search Google Scholar
    • Export Citation
  • Rakotomalala, R., 2008: Comparaison de populations: Tests non paramétriques. Université Lumière Lyon 2 Rep., 201 pp. [Available online at http://eric.univ-lyon2.fr/~ricco/cours/cours/Comp_Pop_Tests_Nonparametriques.pdf.]

  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Memo. NASA/TM-2008-104606, Vol. 27, 97 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.]

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., and Schneider U. , 2005: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the Int. Precipitation Working Group, Monterey, CA, Naval Research Laboratory, 231247. [Available online at http://www.isac.cnr.it/~ipwg/meetings/monterey-2004/pdf/Rudolf2.pdf.]

  • Ruiz-Barradas, A., and Nigam S. , 2006: Great Plains hydroclimate variability: The view from North American Regional Reanalysis. J. Climate, 19, 30043010, doi:10.1175/JCLI3768.1.

    • Search Google Scholar
    • Export Citation
  • Rusticucci, M., Zazulie N. , and Raga G. B. , 2014: Regional winter climate of the southern central Andes: Assessing the performance of ERA‐Interim for climate studies. J. Geophys. Res. Atmos., 119, 85688582, doi:10.1002/2013JD021167.

    • Search Google Scholar
    • Export Citation
  • Sagintayev, Z., and Coauthors, 2012: A remote sensing contribution to hydrologic modelling in arid and inaccessible watersheds, Pishin Lora basin, Pakistan. Hydrol. Processes, 26, 8599, doi:10.1002/hyp.8114.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schaake, J., Cong S. , and Duan Q. , 2006: The US MOPEX data set. IAHS Publ., 307, 928. [Available online at http://iahs.info/uploads/dms/13600.04-9-28-SCHAAKE.pdf.]

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Becker A. , Finger P. , Meyer-Christoffer A. , Ziese M. , and Rudolf B. , 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Rood R. B. , and Pfaendtner J. , 1993: An assimilated dataset for earth science applications. Bull. Amer. Meteor. Soc., 74, 23312342, doi:10.1175/1520-0477(1993)074<2331:AADFES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, D.-J., 1998: Real-time estimation of rainfall fields using radar rainfall and rain gage data. J. Hydrol., 208, 3752, doi:10.1016/S0022-1694(98)00141-3.

    • Search Google Scholar
    • Export Citation
  • Shafran, P., Woollen J. , Ebisuzaki W. , Shi W. , Fan Y. , Grumbine R. , and Fennessy M. , 2004: Observational data used for assimilation in the NCEP North American Regional Reanalysis. 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., 1.4. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_71689.htm.]

  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Livneh B. , and Wood E. F. , 2012: Representation of terrestrial hydrology and large-scale drought of the continental United States from the North American Regional Reanalysis. J. Hydrometeor., 13, 856876, doi:10.1175/JHM-D-11-065.1.

    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., Theory and Decision Library, Vol. 40, Springer, 133–145, doi:10.1007/978-94-017-3048-8_7.

  • Simmons, A., Willett K. , Jones P. , Thorne P. , and Dee D. , 2010: Low‐frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., Smith J. A. , Burges S. J. , Alonso C. V. , and Darden R. W. , 1999: Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour. Res., 35, 24872503, doi:10.1029/1999WR900142.

    • Search Google Scholar
    • Export Citation
  • Thiessen, A. H., 1911: Precipitation averages for large areas. Mon. Wea. Rev., 39, 10821089, doi:10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Fasullo J. T. , and Mackaro J. , 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Arkin P. , Sapiano M. R. , and Ebert E. E. , 2008: Evaluating high-resolution precipitation products. Bull. Amer. Meteor. Soc., 89, 19111916, doi:10.1175/2008BAMS2652.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA‐40 Re‐Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vicente, G., Davenport J. , and Scofield R. , 2002: The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens., 23, 221230, doi:10.1080/01431160010006935.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., Applequist S. , Menne M. J. , Williams C. N. , and Thorne P. , 2012: An intercomparison of temperature trends in the U.S. Historical Climatology Network and recent atmospheric reanalyses. Geophys. Res. Lett., 39, L10703, doi:10.1029/2012GL051387.

    • Search Google Scholar
    • Export Citation
  • Vu, M., Raghavan S. , and Liong S. , 2012: SWAT use of gridded observations for simulating runoff—A Vietnam river basin study. Hydrol. Earth Syst. Sci., 16, 28012811, doi:10.5194/hess-16-2801-2012.

    • Search Google Scholar
    • Export Citation
  • Wang, W., Xie P. , Yoo S.-H. , Xue Y. , Kumar A. , and Wu X. , 2011: An assessment of the surface climate in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 16011620, doi:10.1007/s00382-010-0935-7.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., Brandes E. A. , Sun J. , Yates D. N. , and Mueller C. K. , 2000: Prediction of a flash flood in complex terrain. Part I: A comparison of rainfall estimates from radar, and very short range rainfall simulations from a dynamic model and an automated algorithmic system. J. Appl. Meteor., 39, 797814, doi:10.1175/1520-0450(2000)039<0797:POAFFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., and Coauthors, 2011: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823848, doi:10.1175/2011JHM1369.1.

    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., Balsamo G. , Bellouin N. , Gomes S. , Best M. J. , and Viterbo P. , 2014: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data. Water Resour. Res., 50, 75057514, doi:10.1002/2014WR015638.

    • Search Google Scholar
    • Export Citation
  • Wei, J., Su H. , and Yang Z.-L. , 2016: Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Climate Dyn., 46, 467481, doi:10.1007/s00382-015-2593-2.

    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., Mass C. F. , and Colle B. A. , 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 80, 22892298, doi:10.1175/1520-0477(1999)080<2289:TLOTWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., and Bretherton C. S. , 2000: Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the northwestern United States. J. Climate, 13, 19361950, doi:10.1175/1520-0442(2000)013<1936:VOMPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willett, K., Dolman A. , Hall B. , and Thorne P. , 2012: Global climate [in “State of the Climate in 2011”]. Bull. Amer. Meteor. Soc., 93 (7), S7S55, doi:10.1175/2012BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Woo, M. K., and Thorne R. , 2006: Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrol. Processes, 20, 21292139, doi:10.1002/hyp.6205.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Körnich H. , and Holmgren K. , 2013: How well do reanalyses represent the southern African precipitation? Climate Dyn., 40, 951962, doi:10.1007/s00382-012-1423-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1943 786 74
PDF Downloads 999 203 12