A Multiscale Evaluation of the Detection Capabilities of High-Resolution Satellite Precipitation Products in West Africa

Clément Guilloteau Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse III, CNRS, CNES, IRD, Toulouse, France

Search for other papers by Clément Guilloteau in
Current site
Google Scholar
PubMed
Close
,
Rémy Roca Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse III, CNRS, CNES, IRD, Toulouse, France

Search for other papers by Rémy Roca in
Current site
Google Scholar
PubMed
Close
, and
Marielle Gosset Géoscience Environnement Toulouse, Université de Toulouse III, CNRS, IRD, Toulouse, France

Search for other papers by Marielle Gosset in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Validation studies have assessed the accuracy of satellite-based precipitation estimates at coarse scale (1° and 1 day or coarser) in the tropics, but little is known about their ability to capture the finescale variability of precipitation. Rain detection masks derived from four multisatellite passive sensor products [Tropical Amount of Precipitation with an Estimate of Errors (TAPEER), PERSIANN-CCS, CMORPH, and GSMaP] are evaluated against ground radar data in Burkina Faso. The multiscale evaluation is performed down to 2.8 km and 15 min through discrete wavelet transform. The comparison of wavelet coefficients allows identification of the scales for which the precipitation fraction (fraction of space and time that is rainy) derived from satellite observations is consistent with the reference. The wavelet-based spectral analysis indicates that the energy distribution associated with the rain/no rain variability throughout spatial and temporal scales in satellite products agrees well with radar-based precipitation fields. The wavelet coefficients characterizing very finescale variations (finer than 40 km and 2 h) of satellite and ground radar masks are poorly correlated. Coarse spatial and temporal scales are essentially responsible for the agreement between satellite and radar masks. Consequently, the spectral energy of the difference between the two masks is concentrated in fine scales. Satellite-derived multiyear mean diurnal cycles of rain occurrence are in good agreement with gauge data in Benin and Niger. Spectral analysis and diurnal cycle computation are also performed in the West Africa region using the TRMM Precipitation Radar. The results at the regional scale are consistent with the results obtained over the ground radar and gauge sites.

Corresponding author address: Clément Guilloteau, Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse III, 14 avenue Edouard Belin, Toulouse 31400, France. E-mail: clement.guilloteau@legos.obs-mip.fr

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

Validation studies have assessed the accuracy of satellite-based precipitation estimates at coarse scale (1° and 1 day or coarser) in the tropics, but little is known about their ability to capture the finescale variability of precipitation. Rain detection masks derived from four multisatellite passive sensor products [Tropical Amount of Precipitation with an Estimate of Errors (TAPEER), PERSIANN-CCS, CMORPH, and GSMaP] are evaluated against ground radar data in Burkina Faso. The multiscale evaluation is performed down to 2.8 km and 15 min through discrete wavelet transform. The comparison of wavelet coefficients allows identification of the scales for which the precipitation fraction (fraction of space and time that is rainy) derived from satellite observations is consistent with the reference. The wavelet-based spectral analysis indicates that the energy distribution associated with the rain/no rain variability throughout spatial and temporal scales in satellite products agrees well with radar-based precipitation fields. The wavelet coefficients characterizing very finescale variations (finer than 40 km and 2 h) of satellite and ground radar masks are poorly correlated. Coarse spatial and temporal scales are essentially responsible for the agreement between satellite and radar masks. Consequently, the spectral energy of the difference between the two masks is concentrated in fine scales. Satellite-derived multiyear mean diurnal cycles of rain occurrence are in good agreement with gauge data in Benin and Niger. Spectral analysis and diurnal cycle computation are also performed in the West Africa region using the TRMM Precipitation Radar. The results at the regional scale are consistent with the results obtained over the ground radar and gauge sites.

Corresponding author address: Clément Guilloteau, Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse III, 14 avenue Edouard Belin, Toulouse 31400, France. E-mail: clement.guilloteau@legos.obs-mip.fr

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save
  • Behrangi, A., Sorooshian S. , and Hsu K. L. , 2012: Summertime evaluation of REFAME over the United States for near real-time high resolution precipitation estimation. J. Hydrol., 456–457, 130138, doi:10.1016/j.jhydrol.2012.06.033.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and Yuter S. E. , 2013: Observed frequency and intensity of tropical precipitation from instantaneous estimates. J. Geophys. Res. Atmos., 118, 95349551, doi:10.1002/jgrd.50694.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., and Gebremichael M. , 2011: Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res., 47, W06526, doi:10.1029/2010WR009917.

    • Search Google Scholar
    • Export Citation
  • Briggs, W. M., and Levine R. A. , 1997: Wavelets and field forecast verification. Mon. Wea. Rev., 125, 13291341, doi:10.1175/1520-0493(1997)125<1329:WAFFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Casati, B., Ross G. , and Stephenson D. B. , 2004: A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteor. Appl., 11, 141154, doi:10.1017/S1350482704001239.

    • Search Google Scholar
    • Export Citation
  • Cassé, C., Gosset M. , Peugeot C. , Pedinotti V. , Boone A. , Tanimoun B. A. , and Decharme B. , 2015: Potential of satellite rainfall products to predict Niger River flood events in Niamey. Atmos. Res., 163, 162176, doi:10.1016/j.atmosres.2015.01.010.

    • Search Google Scholar
    • Export Citation
  • Chambon, P., Roca R. , Jobard I. , and Aublanc J. , 2012: TAPEER-BRAIN product algorithm theoretical basis document. Megha-Tropiques Tech. Memo. 4, 13 pp. [Available online at http://meghatropiques.ipsl.polytechnique.fr/search/megha-tropiques-technical-memorandum/megha-tropiques-technical-memorandum-n-4/view.html.]

  • Chambon, P., Jobard I. , Roca R. , and Viltard N. , 2013a: An investigation of the error budget of tropical rainfall accumulation derived from merged passive microwave and infrared satellite measurements. Quart. J. Roy. Meteor. Soc., 139, 879893, doi:10.1002/qj.1907.

    • Search Google Scholar
    • Export Citation
  • Chambon, P., Roca R. , Jobard I. , and Capderou M. , 2013b: The sensitivity of tropical rainfall estimation from satellite to the configuration of the microwave imager constellation. IEEE Geosci. Remote Sens. Lett., 10, 9961000, doi:10.1109/LGRS.2012.2227668.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759, doi:10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Amato, N., and Lebel T. , 1998: On the characteristics of the rainfall events in the Sahel with a view to the analysis of climatic variability. Int. J. Climatol., 18, 955974, doi:10.1002/(SICI)1097-0088(199807)18:9<955::AID-JOC236>3.0.CO;2-6.

    • Search Google Scholar
    • Export Citation
  • Depraetere, C., Gosset M. , Ploix S. , and Laurent H. , 2009: The organization and kinematics of tropical rainfall systems ground tracked at mesoscale with gages: First results from the campaigns 1999–2006 on the Upper Ouémé Valley (Benin). J. Hydrol., 375, 143160, doi:10.1016/j.jhydrol.2009.01.011.

    • Search Google Scholar
    • Export Citation
  • Domingues, M. O., Mendes O. , and Da Costa A. M. , 2005: On wavelet techniques in atmospheric sciences. Adv. Space Res., 35, 831842, doi:10.1016/j.asr.2005.02.097.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., Paeth H. , Ermert V. , Pohle S. , and Diederich M. , 2010: Meteorological processes influencing the weather and climate of Benin. Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa, P. Speth, M. Christoph, and B. Diekkrüger, Eds., Springer, 132–163.

  • Fiolleau, T., and Roca R. , 2013: Composite life cycle of tropical mesoscale convective systems from geostationary and low Earth orbit satellite observations: Method and sampling considerations. Quart. J. Roy. Meteor. Soc., 139, 941953, doi:10.1002/qj.2174.

    • Search Google Scholar
    • Export Citation
  • Flandrin, P., 1998: Time-Frequency/Time-Scale Analysis. Academic Press, 386 pp.

  • Gebremichael, M., Bitew M. M. , Hirpa F. A. , and Tesfay G. N. , 2014: Accuracy of satellite rainfall estimates in the Blue Nile basin: Lowland plain versus highland mountain. Water Resour. Res., 50, 87758790, doi:10.1002/2013WR014500.

    • Search Google Scholar
    • Export Citation
  • Gosset, M., Viarre J. , Quantin G. , and Alcoba M. , 2013: Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Quart. J. Roy. Meteor. Soc., 139, 923940, doi:10.1002/qj.2130.

    • Search Google Scholar
    • Export Citation
  • Grimes, D. I., and Pardo-Igúzquiza E. , 2010: Geostatistical analysis of rainfall. Geogr. Anal., 42, 136160, doi:10.1111/j.1538-4632.2010.00787.x.

    • Search Google Scholar
    • Export Citation
  • Guilloteau, C., Gosset M. , Vignolles C. , Alcoba M. , Tourre Y. M. , and Lacaux J. P. , 2014: Impacts of satellite-based rainfall products on predicting spatial patterns of Rift Valley fever vectors. J. Hydrometeor., 15, 16241635, doi:10.1175/JHM-D-13-0134.1.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Haile A. T. , Tian Y. , and Joyce R. J. , 2012: Evaluation of the high-resolution CMORPH satellite rainfall product using dense rain gauge observations and radar-based estimates. J. Hydrometeor., 13, 17841798, doi:10.1175/JHM-D-12-017.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K. , Sorooshian S. , and Gao X. , 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 18341853, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Gochis D. , Cheng J. T. , Hsu K. L. , and Sorooshian S. , 2007: Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeor., 8, 469482, doi:10.1175/JHM574.1.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Anagnostou E. N. , 2006: A two-dimensional satellite rainfall error model. IEEE Trans. Geosci. Remote Sens., 44, 15111522, doi:10.1109/TGRS.2005.863866.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Huffman G. J. , 2008: Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeor., 9, 563575, doi:10.1175/2007JHM925.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. T. , and Nelkin E. J. , 2015: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.]

  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. I. , 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., and Coauthors, 2014: Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation. Mon. Wea. Rev., 142, 10531073, doi:10.1175/MWR-D-13-00204.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kacimi, S., Viltard N. , and Kirstetter P.-E. , 2013: A new methodology for rain identification from passive microwave data in the tropics using neural networks. Quart. J. Roy. Meteor. Soc., 139, 912922, doi:10.1002/qj.2114.

    • Search Google Scholar
    • Export Citation
  • Kacou, M., 2014: Analyse des précipitations en zone sahélienne à partir d’un radar bande X polarimétrique. Ph.D. thesis, Université Toulouse III, Université Félix Houphouët-Boigny d’Abidjan Cocody, 223 pp. [Available online at http://thesesups.ups-tlse.fr/2560/.]

  • Kebe, C. M. F., Sauvageot H. , and Nzeukou A. , 2005: The relation between rainfall and area–time integrals at the transition from an arid to an equatorial climate. J. Climate, 18, 38063819, doi:10.1175/JCLI3451.1.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., 2001: Satellite rainfall climatology: A review. Int. J. Climatol., 21, 10411066, doi:10.1002/joc.635.

  • Koffi, A. K., Gosset M. , Zahiri E. P. , Ochou A. D. , Kacou M. , Cazenave F. , and Assamoi P. , 2014: Evaluation of X-band polarimetric radar estimation of rainfall and rain drop size distribution parameters in West Africa. Atmos. Res., 143, 438461, doi:10.1016/j.atmosres.2014.03.009.

    • Search Google Scholar
    • Export Citation
  • Krause, P., Boyle D. P. , and Bäse F. , 2005: Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5, 8997, doi:10.5194/adgeo-5-89-2005.

    • Search Google Scholar
    • Export Citation
  • Kumar, P., and Foufoula-Georgiou E. , 1993: A new look at rainfall fluctuations and scaling properties of spatial rainfall using orthogonal wavelets. J. Appl. Meteor., 32, 209222, doi:10.1175/1520-0450(1993)032<0209:ANLARF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, P., and Foufoula-Georgiou E. , 1997: Wavelet analysis for geophysical applications. Rev. Geophys., 35, 385412, doi:10.1029/97RG00427.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2010: The AMMA field campaigns: Multiscale and multidisciplinary observations in the West African region. Quart. J. Roy. Meteor. Soc., 136, 833, doi:10.1002/qj.486.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and Kunstmann H. , 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and Mandelbrot B. B. , 1985: Fractal properties of rain, and a fractal model. Tellus, 37A, 209232, doi:10.1111/j.1600-0870.1985.tb00423.x.

    • Search Google Scholar
    • Export Citation
  • Mallat, S., 1999: A Wavelet Tour of Signal Processing. Academic Press, 619 pp.

  • Mathon, V., Laurent H. , and Lebel T. , 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, doi:10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Clark K. A. , Martner B. E. , and Tokay A. , 2002: X-band polarimetric radar measurements of rainfall. J. Appl. Meteor., 41, 941952, doi:10.1175/1520-0450(2002)041<0941:XBPRMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., Krajewski W. F. , and McPhaden M. J. , 1994: Estimating rainfall in the tropics using the fractional time raining. J. Appl. Meteor., 33, 387393, doi:10.1175/1520-0450(1994)033<0387:ERITTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and Zipser E. J. , 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Cifelli R. , and Rutledge S. A. , 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, doi:10.1175/MWR3200.1.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products. J. Appl. Meteor., 42, 13371354, doi:10.1175/1520-0450(2003)042<1337:VOTAOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Over, T. M., and Gupta V. K. , 1996: A space–time theory of mesoscale rainfall using random cascades. J. Geophys. Res., 101, 26 31926 331, doi:10.1029/96JD02033.

    • Search Google Scholar
    • Export Citation
  • Perica, S., and Foufoula-Georgiou E. , 1996: Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J. Geophys. Res., 101, 26 34726 361, doi:10.1029/96JD01870.

    • Search Google Scholar
    • Export Citation
  • Pierre, C., Bergametti G. , Marticorena B. , Mougin E. , Lebel T. , and Ali A. , 2011: Pluriannual comparisons of satellite-based rainfall products over the Sahelian belt for seasonal vegetation modeling. J. Geophys. Res., 116, D18201, doi:10.1029/2011JD016115.

    • Search Google Scholar
    • Export Citation
  • Roca, R., Chambon P. , Jobard I. , Kirstetter P. E. , Gosset M. , and Bergès J. C. , 2010: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error estimates. J. Appl. Meteor. Climatol., 49, 715731, doi:10.1175/2009JAMC2318.1.

    • Search Google Scholar
    • Export Citation
  • Roca, R., Aublanc J. , Chambon P. , Fiolleau T. , and Viltard N. , 2014: Robust observational quantification of the contribution of mesoscale convective systems to rainfall in the tropics. J. Climate, 27, 49524958, doi:10.1175/JCLI-D-13-00628.1.

    • Search Google Scholar
    • Export Citation
  • Roca, R., and Coauthors, 2015: The Megha-Tropiques mission: A review after three years in orbit. Front. Earth Sci., 3, 17, doi:10.3389/feart.2015.00017.

    • Search Google Scholar
    • Export Citation
  • Rossa, A. M., Nurmi P. , and Ebert E. E. , 2008: Overview of methods for the verification of quantitative precipitation fore-casts. Precipitation: Advances in Measurement, Estimation and Prediction, S. C. Michaelides, Ed., Springer, 418–450.

  • Sapiano, M. R. P., and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, doi:10.1175/2008JHM1052.1.

    • Search Google Scholar
    • Export Citation
  • Saux Picart, S., Butenschön M. , and Shutler J. D. , 2012: Wavelet-based spatial comparison technique for analysing and evaluating two-dimensional geophysical model fields. Geosci. Model Dev., 5, 223230, doi:10.5194/gmd-5-223-2012.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., Pili P. , Tjemkes S. , Just D. , Kerkmann J. , Rota S. , and Ratier A. , 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, doi:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., Han H. J. , and Seo E. K. , 2010: Validation of satellite-based high-resolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. J. Appl. Meteor. Climatol., 49, 701714, doi:10.1175/2009JAMC2266.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Kummerow C. D. , 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, doi:10.1175/2006JAS2375.1.

    • Search Google Scholar
    • Export Citation
  • Teo, C. K., and Grimes D. I. , 2007: Stochastic modelling of rainfall from satellite data. J. Hydrol., 346, 3350, doi:10.1016/j.jhydrol.2007.08.014.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Sohn B. J. , Oh H. J. , Ebert E. E. , Levizzani V. , and Smith E. A. , 2009: Validating a rapid-update satellite precipitation analysis across telescoping space and time scales. Meteor. Atmos. Phys., 105, 99108, doi:10.1007/s00703-009-0037-4.

    • Search Google Scholar
    • Export Citation
  • Turner, B. J., Zawadzki I. , and Germann U. , 2004: Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteor., 43, 231248, doi:10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151, doi:10.2151/jmsj.87A.137.

    • Search Google Scholar
    • Export Citation
  • Venugopal, V., and Foufoula-Georgiou E. , 1996: Energy decomposition of rainfall in the time–frequency–scale domain using wavelet packets. J. Hydrol., 187, 327, doi:10.1016/S0022-1694(96)03084-3.

    • Search Google Scholar
    • Export Citation
  • Venugopal, V., Roux S. G. , Foufoula-Georgiou E. , and Arneodo A. , 2006: Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism. Water Resour. Res., 42, W06D14, doi:10.1029/2005WR004489.

    • Search Google Scholar
    • Export Citation
  • Vetterli, M., and Herley C. , 1992: Wavelets and filter banks: Theory and design. IEEE Trans. Signal Proc., 40, 22072232, doi:10.1109/78.157221.

    • Search Google Scholar
    • Export Citation
  • Viltard, N., Burlaud C. , and Kummerow C. D. , 2006: Rain retrieval from TMI brightness temperature measurements using a TRMM PR–based database. J. Appl. Meteor. Climatol., 45, 455466, doi:10.1175/JAM2346.1.

    • Search Google Scholar
    • Export Citation
  • Xu, L., Gao X. , Sorooshian S. , Arkin P. A. , and Imam B. , 1999: A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteor., 38, 569579, doi:10.1175/1520-0450(1999)038<0569:AMITTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5310 3571 436
PDF Downloads 407 69 7