Satellite-Based Estimation of Temporally Resolved Dust Radiative Forcing in Snow Cover

Steven D. Miller Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven D. Miller in
Current site
Google Scholar
PubMed
Close
,
Fang Wang Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Fang Wang in
Current site
Google Scholar
PubMed
Close
,
Ann B. Burgess Computer Science Department, University of Southern California, Los Angeles, California

Search for other papers by Ann B. Burgess in
Current site
Google Scholar
PubMed
Close
,
S. McKenzie Skiles Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by S. McKenzie Skiles in
Current site
Google Scholar
PubMed
Close
,
Matthew Rogers Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Matthew Rogers in
Current site
Google Scholar
PubMed
Close
, and
Thomas H. Painter Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Thomas H. Painter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Runoff from mountain snowpack is an important freshwater supply for many parts of the world. The deposition of aeolian dust on snow decreases snow albedo and increases the absorption of solar irradiance. This absorption accelerates melting, impacting the regional hydrological cycle in terms of timing and magnitude of runoff. The Moderate Resolution Imaging Spectroradiometer (MODIS) Dust Radiative Forcing in Snow (MODDRFS) satellite product allows estimation of the instantaneous (at time of satellite overpass) surface radiative forcing caused by dust. While such snapshots are useful, energy balance modeling requires temporally resolved radiative forcing to represent energy fluxes to the snowpack, as modulated primarily by varying cloud cover. Here, the instantaneous MODDRFS estimate is used as a tie point to calculate temporally resolved surface radiative forcing. Dust radiative forcing scenarios were considered for 1) clear-sky conditions and 2) all-sky conditions using satellite-based cloud observations. Comparisons against in situ stations in the Rocky Mountains show that accounting for the temporally resolved all-sky solar irradiance via satellite retrievals yields a more representative time series of dust radiative effects compared to the clear-sky assumption. The modeled impact of dust on enhanced snowmelt was found to be significant, accounting for nearly 50% of the total melt at the more contaminated station sites. The algorithm is applicable to regional basins worldwide, bearing relevance to both climate process research and the operational management of water resources.

Corresponding author address: Steven D. Miller, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523. E-mail: steven.miller@colostate.edu

Abstract

Runoff from mountain snowpack is an important freshwater supply for many parts of the world. The deposition of aeolian dust on snow decreases snow albedo and increases the absorption of solar irradiance. This absorption accelerates melting, impacting the regional hydrological cycle in terms of timing and magnitude of runoff. The Moderate Resolution Imaging Spectroradiometer (MODIS) Dust Radiative Forcing in Snow (MODDRFS) satellite product allows estimation of the instantaneous (at time of satellite overpass) surface radiative forcing caused by dust. While such snapshots are useful, energy balance modeling requires temporally resolved radiative forcing to represent energy fluxes to the snowpack, as modulated primarily by varying cloud cover. Here, the instantaneous MODDRFS estimate is used as a tie point to calculate temporally resolved surface radiative forcing. Dust radiative forcing scenarios were considered for 1) clear-sky conditions and 2) all-sky conditions using satellite-based cloud observations. Comparisons against in situ stations in the Rocky Mountains show that accounting for the temporally resolved all-sky solar irradiance via satellite retrievals yields a more representative time series of dust radiative effects compared to the clear-sky assumption. The modeled impact of dust on enhanced snowmelt was found to be significant, accounting for nearly 50% of the total melt at the more contaminated station sites. The algorithm is applicable to regional basins worldwide, bearing relevance to both climate process research and the operational management of water resources.

Corresponding author address: Steven D. Miller, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523. E-mail: steven.miller@colostate.edu
Save
  • Bales, R. C., Molotch N. P. , Painter T. H. , Dettinger M. D. , Rice R. , and Dozier J. , 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, doi:10.1029/2005WR004387.

    • Search Google Scholar
    • Export Citation
  • Brahney, J., Ballantyne A. P. , Sievers C. , and Neff J. C. , 2013: Increasing Ca2+ deposition in the western US: The role of mineral aerosols. Aeolian Res., 10, 77–87, doi:10.1016/j.aeolia.2013.04.003.

    • Search Google Scholar
    • Export Citation
  • Brandt, R. E., Warren S. G. , and Clarke A. D. , 2011: A controlled snowmaking experiment testing the relation between black carbon content and reduction of snow albedo. J. Geophys. Res., 116, D08109, doi:10.1029/2010JD015330.

    • Search Google Scholar
    • Export Citation
  • Bryant, A. C., Painter T. H. , Deems J. S. , and Bender S. M. , 2013: Impact of dust radiative forcing in snow on accuracy of operational runoff prediction in the upper Colorado River basin. Geophys. Res. Lett., 40, 3945–3949, doi:10.1002/grl.50773.

    • Search Google Scholar
    • Export Citation
  • Conway, H., Gades A. , and Raymond C. F. , 1996: Albedo of dirty snow during conditions of melt. Water Resour. Res., 32, 1713–1718, doi:10.1029/96WR00712.

    • Search Google Scholar
    • Export Citation
  • Corr, C. A., and Coauthors, 2016: Observational evidence for the convective transport of dust over the central United States. J. Geophys. Res. Atmos., 121, 1306–1319, doi:10.1002/2015JD023789.

    • Search Google Scholar
    • Export Citation
  • Crawford, C. J., Manson S. M. , Bauer M. E. , and Hall D. K. , 2013: Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development. Remote Sens. Environ., 135, 224–233, doi:10.1016/j.rse.2013.04.004.

    • Search Google Scholar
    • Export Citation
  • Dozier, J., 1989: Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ., 28, 9–22, doi:10.1016/0034-4257(89)90101-6.

    • Search Google Scholar
    • Export Citation
  • Dozier, J., and Painter T. H. , 2004: Multispectral and hyperspectral remote sensing of alpine snow properties. Annu. Rev. Earth Planet. Sci., 32, 465–494, doi:10.1146/annurev.earth.32.101802.120404.

    • Search Google Scholar
    • Export Citation
  • Franzén, L. G., Mattsson J. O. , MÃ¥rtensson U. , Nihlén T. , and Rapp A. , 1994: Yellow snow over the Alps and Subarctic from dust storm in Africa, March, 1991. Ambio, 23, 233–235.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Riggs G. A. , and Salomonson V. V. , 1995: Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 54, 127–140, doi:10.1016/0034-4257(95)00137-P.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Nazarenko L. , 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA, 101, 423–428, doi:10.1073/pnas.2237157100.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Foster M. J. , Walther A. , and Zhao X. , 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909–922, doi:10.1175/BAMS-D-12-00246.1.

    • Search Google Scholar
    • Export Citation
  • Hutchison, K. D., Mahoney R. L. , Vermote E. F. , Kopp T. J. , Jackson J. M. , Sei A. , and Iisager B. D. , 2009: A geometry-based approach to identifying cloud shadows in the VIIRS cloud mask algorithm for NPOESS. J. Atmos. Oceanic Technol., 26, 1388–1397, doi:10.1175/2009JTECHA1198.1.

    • Search Google Scholar
    • Export Citation
  • Jones, H. A., 1913: Effects of dust on the melting of snow. Mon. Wea. Rev., 41, 599, doi:10.1175/1520-0493(1913)41<599a:EODOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, D., and Dozier J. , 1992: Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 3043–3054, doi:10.1029/92WR01483.

    • Search Google Scholar
    • Export Citation
  • Marks, D., Kimball J. , Tingey D. , and Link T. , 1998: The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: A case study of the 1996 Pacific Northwest flood. Hydrol. Processes, 12, 1569–1587, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1569::AID-HYP682>3.0.CO;2-L.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., Kuciauskas A. P. , Liu M. , Ji Q. , Reid J. S. , Breed D. W. , Walker A. L. , and Mandoos A. A. , 2008: Haboob dust storms of the southern Arabian Peninsula. J. Geophys. Res., 113, D01202, doi:10.1029/2007JD008550.

    • Search Google Scholar
    • Export Citation
  • Neff, J. C., and Coauthors, 2008: Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci., 1, 189–195, doi:10.1038/ngeo133.

    • Search Google Scholar
    • Export Citation
  • Painter, T. H., Barrett A. P. , Landry C. C. , Neff J. C. , Cassidy M. P. , Lawrence C. R. , McBride K. E. , and Farmer G. L. , 2007: Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett., 34, L12502, doi:10.1029/2007GL030284.

    • Search Google Scholar
    • Export Citation
  • Painter, T. H., Deems J. S. , Belnap J. , Hamlet A. F. , Landry C. C. , and Udall B. , 2010: Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. USA, 107, 17 125–17 130, doi:10.1073/pnas.0913139107.

    • Search Google Scholar
    • Export Citation
  • Painter, T. H., Bryant A. C. , and Skiles S. M. , 2012a: Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. Lett., 39, L17502, doi:10.1029/2012GL052457.

    • Search Google Scholar
    • Export Citation
  • Painter, T. H., Skiles S. M. , Deems J. S. , Bryant A. C. , and Landry C. C. , 2012b: Dust radiative forcing in snow of the upper Colorado River basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour. Res., 48, W07521, doi:10.1029/2012WR011985.

    • Search Google Scholar
    • Export Citation
  • Painter, T. H., Seidel F. C. , Bryant A. C. , Skiles S. M. , and Rittger K. , 2013: Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow. J. Geophys. Res. Atmos., 118, 9511–9523, doi:10.1002/jgrd.50520.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and Laszlo I. , 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194–211, doi:10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., 1999: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA, 96, 3396–3403, doi:10.1073/pnas.96.7.3396.

    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., Yang S. R. , Gautier C. , and Sowle D. , 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull. Amer. Meteor. Soc., 79, 2101–2114, doi:10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., and Appel I. , 2004: Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ., 89, 351–360, doi:10.1016/j.rse.2003.10.016.

    • Search Google Scholar
    • Export Citation
  • Schaepman-Strub, G., Schaepman M. , Painter T. H. , Dangel S. , and Martonchik J. V. , 2006: Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ., 103, 27–42, doi:10.1016/j.rse.2006.03.002.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Gunshor M. M. , Menzel W. P. , Gurka J. J. , Li J. , and Bachmeier A. S. , 2005: Introducing the next generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079–1096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Semmens, K. A., and Ramage J. , 2012: Investigating correlations between snowmelt and forest fires in a high-latitude snowmelt-dominated drainage basin. Hydrol. Processes, 26, 2608–2617, doi:10.1002/hyp.9327.

    • Search Google Scholar
    • Export Citation
  • Sengupta, M. A., Weekley A. , Habte A. , Lopez A. , Molling C. , and Heidinger A. , 2015: Validation of the National Solar Radiation Database (NSRDB) (2005-2012). Rep. NREL/CP-5D00-64981, 6 pp. [Available online at http://www.nrel.gov/docs/fy15osti/64981.pdf.]

  • Singh, S. K., Kulkarni A. V. , and Chaudhary B. S. , 2010: Hyperspectral analysis of snow reflectance to understand the effects of contamination and grain size. Ann. Glaciol., 51, 83–88, doi:10.3189/172756410791386535.

    • Search Google Scholar
    • Export Citation
  • Skiles, S. M., 2014: Dust and black carbon radiative forcing controls on snowmelt in the Colorado River basin. Ph.D. thesis, University of California, Los Angeles, 274 pp. [Available online at http://escholarship.org/uc/item/27s9r0j9.]

  • Skiles, S. M., Painter T. H. , Deems J. S. , Bryant A. C. , and Landry C. C. , 2012: Dust radiative forcing in snow of the upper Colorado River basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour. Res., 48, W07522, doi:10.1029/2012WR011986.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., Tsay S.-C. , Wiscombe W. , and Jayaweera K. , 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509, doi:10.1364/AO.27.002502.

    • Search Google Scholar
    • Export Citation
  • Steltzer, H., Landry C. , Painter T. H. , Anderson J. , and Ayres E. , 2009: Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. Proc. Natl. Acad. Sci. USA, 106, 11 629–11 634, doi:10.1073/pnas.0900758106.

    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., Davis P. A. , and McClain E. P. , 1999: Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the Advanced Very High Resolution Radiometer. J. Atmos. Oceanic Technol., 16, 656–681, doi:10.1175/1520-0426(1999)016<0656:SBAIEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wake, C. P., and Mayewski P. A. , 1994: Modern eolian dust deposition in central Asia. Tellus, 46B, 220–233.

  • Walther, A., and Heidinger A. K. , 2012: Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x. J. Appl. Meteor. Climatol, 51, 1371–1390, doi:10.1175/JAMC-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and Wiscombe W. J. , 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 2734–2745, doi:10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., Hidalgo H. G. , Cayan D. R. , and Swetnam T. W. , 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943, doi:10.1126/science.1128834.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S., Smirnova T. , Benjamin S. , Brundage K. , Sahm S. , Alexander C. , and Schwartz B. , 2009: The High Resolution Rapid Refresh (HRRR): An hourly updated convection resolving model utilizing radar reflectivity assimilation from the RUC/RR. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 15A.6. [Available online at https://ams.confex.com/ams/23WAF19NWP/webprogram/Paper154317.html.]

  • Wiscombe, W. J., and Warren S. G. , 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 2712–2733, doi:10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Woodcock C. E. , 2014: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ., 152, 217–234, doi:10.1016/j.rse.2014.06.012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1450 1123 79
PDF Downloads 296 57 4