Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System

Sujay V. Kumar aHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Sujay V. Kumar in
Current site
Google Scholar
PubMed
Close
,
Benjamin F. Zaitchik bDepartment of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Benjamin F. Zaitchik in
Current site
Google Scholar
PubMed
Close
,
Christa D. Peters-Lidard aHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
,
Matthew Rodell aHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Matthew Rodell in
Current site
Google Scholar
PubMed
Close
,
Rolf Reichle cGlobal Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Rolf Reichle in
Current site
Google Scholar
PubMed
Close
,
Bailing Li aHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
dEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Bailing Li in
Current site
Google Scholar
PubMed
Close
,
Michael Jasinski aHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Michael Jasinski in
Current site
Google Scholar
PubMed
Close
,
David Mocko aHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
cGlobal Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
eScience Applications International Corporation, Beltsville, Maryland

Search for other papers by David Mocko in
Current site
Google Scholar
PubMed
Close
,
Augusto Getirana aHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
dEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Augusto Getirana in
Current site
Google Scholar
PubMed
Close
,
Gabrielle De Lannoy fDepartment of Earth and Environmental Sciences, University of Leuven, Leuven, Belgium

Search for other papers by Gabrielle De Lannoy in
Current site
Google Scholar
PubMed
Close
,
Michael H. Cosh gHydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland

Search for other papers by Michael H. Cosh in
Current site
Google Scholar
PubMed
Close
,
Christopher R. Hain dEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
hNOAA Center for Satellite Applications and Research, College Park, Maryland

Search for other papers by Christopher R. Hain in
Current site
Google Scholar
PubMed
Close
,
Martha Anderson gHydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland

Search for other papers by Martha Anderson in
Current site
Google Scholar
PubMed
Close
,
Kristi R. Arsenault aHydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
iScience Applications International Corporation, McLean, Virginia

Search for other papers by Kristi R. Arsenault in
Current site
Google Scholar
PubMed
Close
,
Youlong Xia jIMSG at NCEP/EMC, College Park, Maryland
kEnvironmental Modeling Center, National Centers for Environmental Prediction, College Park, Maryland

Search for other papers by Youlong Xia in
Current site
Google Scholar
PubMed
Close
, and
Michael Ek kEnvironmental Modeling Center, National Centers for Environmental Prediction, College Park, Maryland

Search for other papers by Michael Ek in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The objective of the North American Land Data Assimilation System (NLDAS) is to provide best-available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin-averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.

Corresponding author address: Sujay Kumar, Hydrological Sciences Laboratory, NASA GSFC, Code 617, Greenbelt, MD 20771. E-mail: sujay.v.kumar@nasa.gov

Abstract

The objective of the North American Land Data Assimilation System (NLDAS) is to provide best-available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin-averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.

Corresponding author address: Sujay Kumar, Hydrological Sciences Laboratory, NASA GSFC, Code 617, Greenbelt, MD 20771. E-mail: sujay.v.kumar@nasa.gov
Save
  • Anderson, M., Norman J. , Mecikalski J. , Otkin J. , and Kustas W. , 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Barrett, A., 2003: National Operational Hydrologic Remote Sensing Snow Data Assimilation System (SNODAS) products at NSIDC. Special Rep. 11, NSIDC, 19 pp. [Available online at https://nsidc.org/pubs/documents/special/nsidc_special_report_11.pdf.]

  • Brasnett, B., 1999: A global analysis for snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726–740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R., and Brasnett B. , 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data, version 1. National Snow and Ice Data Center Distributed Active Archive Center, accessed June 2014, doi:10.5067/W9FOYWH0EQZ3.

  • Burgers, G., van Leeuwen P. , and Evensen G. , 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719–1724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Entekhabi D. , 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345–348, doi:10.1029/1998GL900321.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G., Koster R. , Reichle R. , Mahanama S. , and Liu Q. , 2014: An updated treatment of soil texture and associated hydraulic properties in a global land modeling system. J. Adv. Model. Earth Syst., 6, 957–979, doi:10.1002/2014MS000330.

    • Search Google Scholar
    • Export Citation
  • Eicker, A., Schumacher M. , Kusche J. , Doll P. , and Schmied H. , 2014: Calibration/data assimilation approach for integrating GRACE data into the WaterGAP Global Hydrology Model (WGHM) using an ensemble Kalman filter: First results. Surv. Geophys., 35, 1285–1309, doi:10.1007/s10712-014-9309-8.

    • Search Google Scholar
    • Export Citation
  • Ek, M., and Coauthors, 2011: North American Land Data Assimilation System Phase 2 (NLDAS-2): Its development and application to support US drought monitoring and prediction of National Integrated Drought Information System (NIDIS). GEWEX News, Vol. 21, International GEWEX Project Office, Silver Spring, MD, 7–9.

  • Forman, B., and Reichle R. , 2013: The spatial scale of model errors and assimilated retrievals in a terrestrial water storage assimilation system. Water Resour. Res., 49, 7457–7468, doi:10.1002/2012WR012885.

    • Search Google Scholar
    • Export Citation
  • Forman, B., Reichle R. , and Rodell M. , 2012: Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Water Resour. Res., 48, W01507, doi:10.1029/2011WR011239.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and Cohn S. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Getirana, A., Boone A. , Yamazaki D. , Decharme B. , Papa F. , and Mognard N. , 2012: The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon basin. J. Hydrometeor., 13, 1641–1665, doi:10.1175/JHM-D-12-021.1.

    • Search Google Scholar
    • Export Citation
  • Houborg, R., Rodell M. , Li B. , Reichle R. , and Zaitchik B. , 2012: Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res., 48, W07525, doi:10.1029/2011WR011291.

    • Search Google Scholar
    • Export Citation
  • Jackson, T., and Coauthors, 2010: Validation of Advanced Microwave Scanning Radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens., 48, 4256–4272, doi:10.1109/TGRS.2010.2051035.

    • Search Google Scholar
    • Export Citation
  • Jung, M., Reichstein M. , and Bondeau A. , 2009: Towards a global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001–2003, doi:10.5194/bg-6-2001-2009.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 809–24 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 1049–1063, doi:10.1175/JHM-387.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 1402–1415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Peters-Lidard C. , Santanello J. , Harrison K. , Liu Y. , and Shaw M. , 2012: Land surface Verification Toolkit (LVT)—A generalized framework for land surface model evaluation. Geosci. Model Dev., 5, 869–886, doi:10.5194/gmd-5-869-2012.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., and Coauthors, 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 2446–2469, doi:10.1175/JHM-D-13-0132.1.

    • Search Google Scholar
    • Export Citation
  • Landerer, F., and Swenson S. , 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Li, B., Rodell M. , Zaitchik B. , Reichle R. , and Koster R. , 2012: Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe. J. Hydrol., 446–447, 103–115, doi:10.1016/j.jhydrol.2012.04.035.

    • Search Google Scholar
    • Export Citation
  • Mahanama, S., Livneh B. , Koster R. , Lettenmaier R. , and Reichle D. , 2012: Soil moisture, snow and seasonal streamflow forecasts in the United States. J. Hydrometeor., 13, 189–203, doi:10.1175/JHM-D-11-046.1.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., Mocko D. , Lee M.-I. , Suarez M. , and Pielke R. Sr., 2010: Ten-year climatology of summertime diurnal rainfall rate over the conterminous U.S. Geophys. Res. Lett., 37, L13807, doi:10.1029/2010GL044139.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R., Chow F. K. , and Kollet S. , 2007: The groundwater–land-surface–atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully coupled simulations. Adv. Water Resour., 30, 2447–2466, doi:10.1016/j.advwatres.2007.05.018.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., Durre I. , Vose R. , Gleason B. , and Houston T. , 2012: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897–910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., Zhao M. S. , and Running S. , 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 1781–1800, doi:10.1016/j.rse.2011.02.019.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C., and Coauthors, 2007: High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innov. Syst. Software Eng., 3, 157–165, doi:10.1007/s11334-007-0028-x.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C., Kumar S. , Mocko D. , and Tian Y. , 2011: Estimating evapotranspiration with land data assimilation systems. Hydrol. Processes, 25, 3979–3992, doi:10.1002/hyp.8387.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Koster R. , 2003: Assessing the impact of horizontal correlations in background fields of soil moisture estimation. J. Hydrometeor., 4, 1229–1242, doi:10.1175/1525-7541(2003)004<1229:ATIOHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., Koster R. , Liu P. , Mahanama S. P. P. , Njoku E. G. , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Houser P. , Berg A. , and Famiglietti J. , 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6, 146–155, doi:10.1175/JHM414.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Chen J. , Kato H. , Famiglietti J. , Nigro J. , and Wilson C. , 2007: Estimating ground water storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J., 15, 159–166, doi:10.1007/s10040-006-0103-7.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Velicogna I. , and Famiglietti J. , 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002, doi:10.1038/nature08238.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., McWilliams E. , Famiglietti J. , Beudoing H. , and Nigro J. , 2011: Estimating evapotranspiration using an observation based terrestrial water budget. Hydrol. Processes, 25, 4082–4092, doi:10.1002/hyp.8369.

    • Search Google Scholar
    • Export Citation
  • Rowlands, D. D., Luthcke S. , Klosko S. , Lemoine F. , Chinn D. , McCarthy J. , Cox C. , and Anderson O. , 2005: Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett., 32, L04310, doi:10.1029/2004GL021908.

    • Search Google Scholar
    • Export Citation
  • Sakumura, C., Bettadpur S. , and Bruinsma S. , 2014: Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett., 41, 1389–1397, doi:10.1002/2013GL058632.

    • Search Google Scholar
    • Export Citation
  • Schaefer, G., Cosh M. , and Jackson T. , 2007: The USDA natural resources conservation service soil climate analysis network (SCAN). J. Atmos. Oceanic Technol., 24, 2073–2077, doi:10.1175/2007JTECHA930.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Xia Y. , Luo L. , Wood E. , Ek M. , Mitchell K. , and the NLDAS Team, 2012: Drought monitoring with the North American Land Data Assimilation System (NLDAS): A framework for merging model and satellite data for improved drought monitoring. Remote Sensing of Drought: Innovative Monitoring Approaches, B. Wardlow, M. Anderson, and J. Verdin, Eds., Taylor and Francis, 228–255.

  • Stieglitz, M., Ducharne A. , Koster R. , and Suarez M. , 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2, 228–242, doi:10.1175/1525-7541(2001)002<0228:TIODSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Su, H., Yang Z.-L. , Dickinson R. , Wilson C. , and Niu G.-Y. , 2010: Multisensor snow data assimilation at the continental scale: The value of Gravity Recovery and Climate Experiment terrestrial water storage information. J. Geophys. Res., 115, D10104, doi:10.1029/2009JD013035.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 1181–1190, doi:10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., and Wahr J. , 2002: Methods for inferring regional surface-mass anomalies from Gravity Recovery Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res., 107, 2193, doi:10.1029/2001JB000576.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., and Wahr J. , 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., Yeh P.-F. , Wahr J. , and Famiglietti J. , 2006: A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys. Res. Lett., 33, L16401, doi:10.1029/2006GL026962.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., Peterson S. , Cuenca R. , Hagimoto Y. , and Lettenmaier D. , 2009: Satellite-based near-real-time estimation of irrigated crop water consumption. J. Geophys. Res., 114, D05114, doi:10.1029/2008JD010854.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., Gao H. , Yeh P. , Oki T. , Su F. , and Lettenmaier D. , 2010: Dynamics of terrestrial water storage change from satellite and surface observations and modeling. J. Hydrometeor., 11, 156–170, doi:10.1175/2009JHM1152.1.

    • Search Google Scholar
    • Export Citation
  • Tangdamrongsub, N., Steele-Dunne S. , Gunter B. , Ditmar P. , and Weerts A. , 2015: Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. Hydrol. Earth Syst. Sci., 19, 2079–2100, doi:10.5194/hess-19-2079-2015.

    • Search Google Scholar
    • Export Citation
  • Tapley, B., Bettadpur S. , Watkins M. , and Reigber C. , 2004: The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., 2009: Increasing rates of ice mass loss from the Greenland and Antarctic Ice Sheets revealed by GRACE. Geophys. Res. Lett., 36, L19503, doi:10.1029/2009GL040222.

    • Search Google Scholar
    • Export Citation
  • Wahr, J., Molenaar M. , and Bryan F. , 1998: Time variability of the earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103, 30 205–30 229, doi:10.1029/98JB02844.

    • Search Google Scholar
    • Export Citation
  • Wahr, J., Swenson S. , and Velicogna I. , 2006: Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33, L06401, doi:10.1029/2005GL025305.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Ek M. , Wei H. , and Meng J. , 2012a: Comparative analysis of relationships between NLDAS-2 forcings and model outputs. Hydrol. Processes, 26, 467–474, doi:10.1002/hyp.8240.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B., Rodell M. , and Reichle R. , 2008: Assimilation of GRACE terrestrial water storage data into a land surface model: Results for the Mississippi River basin. J. Hydrometeor., 9, 535–548, doi:10.1175/2007JHM951.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3996 1721 147
PDF Downloads 2182 491 49