Landfalling Atmospheric Rivers, the Sierra Barrier Jet, and Extreme Daily Precipitation in Northern California’s Upper Sacramento River Watershed

F. Martin Ralph Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
,
Jason M. Cordeira Department of Atmospheric Science and Chemistry, Plymouth State University, Plymouth, New Hampshire

Search for other papers by Jason M. Cordeira in
Current site
Google Scholar
PubMed
Close
,
Paul J. Neiman Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Paul J. Neiman in
Current site
Google Scholar
PubMed
Close
, and
Mimi R. Abel Physical Sciences Division, NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Mimi R. Abel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The upper Sacramento River watershed is vital to California’s water supply and is susceptible to major floods. Orographic precipitation in this complex terrain involves both atmospheric rivers (ARs) and the Sierra barrier jet (SBJ). The south-southeasterly SBJ induces orographic precipitation along south-facing slopes in the Mt. Shasta–Trinity Alps, whereas landfalling ARs ascend up and over the statically stable SBJ and induce orographic precipitation along west-facing slopes in the northern Sierra Nevada. This paper explores the occurrence of extreme daily precipitation (EDP) in this region in association with landfalling ARs and the SBJ. The 50 wettest days (i.e., days with EDP) for water years (WYs) 2002–11 based on the average of daily precipitation from eight rain gauges known as the Northern Sierra 8-Station Index (NS8I) are compared to dates from an SSM/I satellite-based landfalling AR-detection method and dates with SBJ events identified from nearby wind profiler data. These 50 days with EDP accounted for 20% of all precipitation during the 10-WY period, or 5 days with EDP per year on average account for one-fifth of WY precipitation. In summary, 46 of 50 (92%) days with EDP are associated with landfalling ARs on either the day before or the day of precipitation, whereas 45 of 50 (90%) days with EDP are associated with SBJ conditions on the day of EDP. Forty-one of 50 (82%) days with EDP are associated with both a landfalling AR and an SBJ. The top 10 days with EDP were all associated with both a landfalling AR and an SBJ.

Corresponding author address: Jason M. Cordeira, Department of Atmospheric Science and Chemistry, Plymouth State University, 17 High St., MSC 48, Plymouth, NH 03264. E-mail: j_cordeira@plymouth.edu

Abstract

The upper Sacramento River watershed is vital to California’s water supply and is susceptible to major floods. Orographic precipitation in this complex terrain involves both atmospheric rivers (ARs) and the Sierra barrier jet (SBJ). The south-southeasterly SBJ induces orographic precipitation along south-facing slopes in the Mt. Shasta–Trinity Alps, whereas landfalling ARs ascend up and over the statically stable SBJ and induce orographic precipitation along west-facing slopes in the northern Sierra Nevada. This paper explores the occurrence of extreme daily precipitation (EDP) in this region in association with landfalling ARs and the SBJ. The 50 wettest days (i.e., days with EDP) for water years (WYs) 2002–11 based on the average of daily precipitation from eight rain gauges known as the Northern Sierra 8-Station Index (NS8I) are compared to dates from an SSM/I satellite-based landfalling AR-detection method and dates with SBJ events identified from nearby wind profiler data. These 50 days with EDP accounted for 20% of all precipitation during the 10-WY period, or 5 days with EDP per year on average account for one-fifth of WY precipitation. In summary, 46 of 50 (92%) days with EDP are associated with landfalling ARs on either the day before or the day of precipitation, whereas 45 of 50 (90%) days with EDP are associated with SBJ conditions on the day of EDP. Forty-one of 50 (82%) days with EDP are associated with both a landfalling AR and an SBJ. The top 10 days with EDP were all associated with both a landfalling AR and an SBJ.

Corresponding author address: Jason M. Cordeira, Department of Atmospheric Science and Chemistry, Plymouth State University, 17 High St., MSC 48, Plymouth, NH 03264. E-mail: j_cordeira@plymouth.edu
Save
  • Abel, M. R., Neiman P. J. , Sukovich E. , and Ralph F. M. , 2012: Representation of the Sierra barrier jet in 11 years of a high-resolution dynamical reanalysis downscaling. J. Geophys. Res., 117, D18116, doi:10.1029/2012JD017869.

    • Search Google Scholar
    • Export Citation
  • Carter, D. A., Gage K. S. , Ecklund W. L. , Angevine W. M. , Johnston P. E. , Riddle A. C. , Wilson J. S. , and Williams C. R. , 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci., 30, 9771001, doi:10.1029/95RS00649.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2004: Fifty-two years of ‘‘Pineapple-Express’’ storms across the west coast of North America. PIER Project Rep. CEC-500-2005-004, California Energy Commission, 20 pp. [Available online at http://www.energy.ca.gov/2005publications/CEC-500-2005-004/CEC-500-2005-004.PDF.]

  • Dettinger, M. D., Ralph F. M. , Das T. , Neiman P. J. , and Cayan D. , 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., and Sobel A. , 2005: Moist dynamics and orographic precipitation in northern and central California during the New Year’s Flood of 1997. Mon. Wea. Rev., 133, 15941612, doi:10.1175/MWR2943.1.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Molotch N. , Waliser D. , Fetzer E. , and Neiman P. J. , 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., Peirce J. L. , and Poe G. A. , 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790, doi:10.1109/36.58964.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and Kang H.-S. , 2007: The impact of the Sierra Nevada on low-level winds and water vapor transport. J. Hydrometeor., 8, 790804, doi:10.1175/JHM599.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J., Waliser D. E. , Neiman P. J. , Guan B. , Ryoo J.-M. , and Wick G. A. , 2012: Effects of atmospheric river landfalls on the cold season precipitation in California. Climate Dyn., 38, 411429, doi:10.1007/s00382-010-0972-2.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., Neiman P. J. , Moore B. J. , Abel M. R. , Yuter S. E. , and Ralph F. M. , 2013: Kinematic and thermodynamic structures of Sierra barrier jets and overrunning atmospheric rivers during a land-falling winter storm in Northern California. Mon. Wea. Rev., 141, 20152036, doi:10.1175/MWR-D-12-00277.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Minder J. R. , Neiman P. J. , and Sukovich E. M. , 2010: Relationships between barrier jet heights, precipitation distributions, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156, doi:10.1175/2010JHM1264.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., Durran D. R. , and Roe G. H. , 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127, doi:10.1175/JAS-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Kuo Y.-H. , Wee T.-K. , Ma Z. , Taylor G. H. , and Dettinger M. D. , 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, doi:10.1175/2008MWR2550.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. , and Dettinger M. D. , 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Sukovich E. M. , Ralph F. M. , and Abel M. R. , 2010: A seven-year wind profiler-based climatology of the windward barrier jet along California’s northern Sierra Nevada. Mon. Wea. Rev., 138, 12061233, doi:10.1175/2009MWR3170.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Schick L. J. , Ralph F. M. , Abel M. R. , and Wick G. A. , 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Abel M. R. , Moore B. J. , Ralph F. M. , and Sukovich E. S. , 2013: Sierra barrier jets, atmospheric rivers, and precipitation characteristics in Northern California: A composite perspective based on a network of wind profilers. Mon. Wea. Rev., 141, 42114233, doi:10.1175/MWR-D-13-00112.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Moore B. J. , and Zamora B. J. , 2014: The regional influence of an intense Sierra barrier jet and landfalling atmospheric river on orographic precipitation in Northern California: A case study. J. Hydrometeor., 15, 14191439, doi:10.1175/JHM-D-13-0183.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteor., 21, 925930, doi:10.1175/1520-0450(1982)021<0925:BWATSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Dettinger M. D. , 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, doi:10.1175/BAMS-D-11-00188.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: The role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Kiladis G. N. , Weickmann K. , and Reynolds D. M. , 2011: A multi-scale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Zamora R. J. , and Dettinger M. D. , 2013a: Observed impacts of duration and seasonality of atmospheric-river landfalls on soul moisture and runoff in coastal in coastal Northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2013b: The emergence of weather-focused testbeds linking research and forecasting operations. Bull. Amer. Meteor. Soc., 94, 11871210, doi:10.1175/BAMS-D-12-00080.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2014: A vision for future observations for western U.S. extreme precipitation and flooding. J. Contemp. Water Res. Educ., 153, 1632, doi:10.1111/j.1936-704X.2014.03176.x.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., Lin Y.-L. , and Rotunno R. , 2008: Dynamic forcing and mesoscale variability of heavy precipitation events over the Sierra Nevada Mountains. Mon. Wea. Rev., 136, 6277, doi:10.1175/2007MWR2164.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., Yuter S. E. , Neiman P. J. , and Kingsmill D. E. , 2010: Water vapor fluxes and orographic precipitation over Northern California associated with a land-falling atmospheric river. Mon. Wea. Rev., 138, 74100, doi:10.1175/2009MWR2939.1.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1995: The intercomparison of 53 SSM/I water vapor algorithms. Remote Sensing Systems Tech. Rep., 19 pp.

  • White, A. B., and Coauthors, 2012: NOAA’s Rapid Response to the Howard A. Hanson Dam flood risk management crisis. Bull. Amer. Meteor. Soc., 93, 189207, doi:10.1175/BAMS-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • White, A. B., and Coauthors, 2013: A twenty-first-century California observing network for monitoring extreme weather events. J. Atmos. Oceanic Technol., 30, 15851603, doi:10.1175/JTECH-D-12-00217.1.

    • Search Google Scholar
    • Export Citation
  • White, A. B., Neiman P. J. , Creamean J. M. , Coleman T. , Ralph F. M. , and Prather K. A. , 2015: The impacts of California’s San Francisco Bay Area gap on precipitation observed in the Sierra Nevada during HMT and CalWater. J. Hydrometeor., 16, 10481069, doi:10.1175/JHM-D-14-0160.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1585 825 84
PDF Downloads 427 123 32