What is Missing from the Prescription of Hydrology for Land Surface Schemes?

Bruce Davison aMcGill University, Montreal, Quebec, Canada

Search for other papers by Bruce Davison in
Current site
Google Scholar
PubMed
Close
,
Alain Pietroniro bEnvironment and Climate Change Canada, Saskatoon, Saskatchewan, Canada

Search for other papers by Alain Pietroniro in
Current site
Google Scholar
PubMed
Close
,
Vincent Fortin cEnvironment and Climate Change Canada, Montreal, Quebec, Canada

Search for other papers by Vincent Fortin in
Current site
Google Scholar
PubMed
Close
,
Robert Leconte dUniversité de Sherbrooke, Sherbrooke, Quebec, Canada

Search for other papers by Robert Leconte in
Current site
Google Scholar
PubMed
Close
,
Moges Mamo eUniversity of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Moges Mamo in
Current site
Google Scholar
PubMed
Close
, and
M. K. Yau aMcGill University, Montreal, Quebec, Canada

Search for other papers by M. K. Yau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land surface schemes (LSSs) are of potential interest both to hydrologists looking for innovative ways to simulate river flow and the land surface water balance and to atmospheric scientists looking to improve weather and climate predictions. This paper discusses three ideas, which are grounded in hydrological science, to improve LSS predictions of streamflow and latent heat fluxes. These three possibilities are 1) improved representation of lateral flow processes, 2) the appropriate representation of surface heterogeneity, and 3) calibration to streamflow as a way to account for parameter uncertainty. The current understanding of lateral hydrological processes is described along with their representation of a selected group of LSSs. Issues around spatial heterogeneity are discussed, and calibration in hydrologic models and LSSs is examined. A case study of an evapotranspiration-dominated basin with over 10 years of extensive observations in central Canada is presented. The results indicate that in this particular basin, calibration of streamflow presents atmospheric modelers with a unique opportunity to improve upon the current practice of using lookup tables to define parameter values. More studies are needed to determine if model calibration to streamflow is an appropriate method for generally improving LSS-modeled heat fluxes around the globe.

Current affiliation: Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada.

Corresponding author address: Bruce Davison, Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada. E-mail: bruce.davison@canada.ca

Abstract

Land surface schemes (LSSs) are of potential interest both to hydrologists looking for innovative ways to simulate river flow and the land surface water balance and to atmospheric scientists looking to improve weather and climate predictions. This paper discusses three ideas, which are grounded in hydrological science, to improve LSS predictions of streamflow and latent heat fluxes. These three possibilities are 1) improved representation of lateral flow processes, 2) the appropriate representation of surface heterogeneity, and 3) calibration to streamflow as a way to account for parameter uncertainty. The current understanding of lateral hydrological processes is described along with their representation of a selected group of LSSs. Issues around spatial heterogeneity are discussed, and calibration in hydrologic models and LSSs is examined. A case study of an evapotranspiration-dominated basin with over 10 years of extensive observations in central Canada is presented. The results indicate that in this particular basin, calibration of streamflow presents atmospheric modelers with a unique opportunity to improve upon the current practice of using lookup tables to define parameter values. More studies are needed to determine if model calibration to streamflow is an appropriate method for generally improving LSS-modeled heat fluxes around the globe.

Current affiliation: Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada.

Corresponding author address: Bruce Davison, Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada. E-mail: bruce.davison@canada.ca
Save
  • Agriculture and Agri-Food Canada, 2015: National ecological framework. Accessed 10 June 2016. [Available online at http://sis.agr.gc.ca/cansis/nsdb/ecostrat/index.html.]

  • Alavi, N., Bélair S. , Fortin V. , Zhang S. , Husain S. , Carrera M. , and Abrahamowicz M. , 2016: Warm season evaluation of soil moisture prediction in the Soil, Vegetation and Snow (SVS) scheme. J. Hydrometeor., doi:10.1175/JHM-D-15-0189.1, in press.

    • Search Google Scholar
    • Export Citation
  • Amiro, B., and Coauthors, 2006: Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agric. For. Meteor., 136, 237251, doi:10.1016/j.agrformet.2004.11.012.

    • Search Google Scholar
    • Export Citation
  • Archfield, S. A., and Coauthors, 2015: Accelerating advances in continental domain hydrologic modeling. Water Resour. Res., 51, 10 07810 091, doi:10.1002/2015WR017498.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Beljaars A. , Scipal K. , Viterbo P. , van den Hurk B. , Hirschi M. , and Betts A. K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Barr, A., Van der Kamp G. , Black T. , McCaughey J. , and Nesic Z. , 2012: Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull Creek watershed 1999–2009. Agric. For. Meteor., 153, 313, doi:10.1016/j.agrformet.2011.05.017.

    • Search Google Scholar
    • Export Citation
  • Bastidas, L., Hogue T. S. , Sorooshian S. , Gupta H. , and Shuttleworth W. , 2006: Parameter sensitivity analysis for different complexity land surface models using multicriteria methods. J. Geophys. Res., 111, D20101, doi:10.1029/2005JD006377.

    • Search Google Scholar
    • Export Citation
  • Becker, A., 1992: Criteria for a hydrologically sound structuring of large scale land surface process models. Advances in Theoretical Hydrology, Elsevier, 97–112.

  • Bélair, S., Crevier L.-P. , Mailhot J. , Bilodeau B. , and Delage Y. , 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Brown R. , Mailhot J. , Bilodeau B. , and Crevier L.-P. , 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beltaos, S., 2008: Progress in the study and management of river ice jams. Cold Reg. Sci. Technol., 51, 219, doi:10.1016/j.coldregions.2007.09.001.

    • Search Google Scholar
    • Export Citation
  • Best, M., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., 1996: A discussion of distributed hydrological modelling. Distributed Hydrological Modelling, M. B. Abbott and J. C. Refsgaard, Eds., Water Science and Technology Library, Vol. 22, Springer, 255–278, doi:10.1007/978-94-009-0257-2_13.

  • Beven, K. J., and Cloke H. L. , 2012: Comment on “Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water” by Eric F. Wood et al. Water Resour. Res., 48, W01801, doi:10.1029/2011WR010982.

    • Search Google Scholar
    • Export Citation
  • Bierkens, M. F., and Coauthors, 2015: Hyper-resolution global hydrological modelling: What is next? Hydrol. Processes, 29, 310320, doi:10.1002/hyp.10391.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An overview. J. Climate, 17, 187208, doi:10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Lettenmaier D. P. , 2010: Modeling the effects of lakes and wetlands on the water balance of arctic environments. J. Hydrometeor., 11, 276295, doi:10.1175/2009JHM1084.1.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., Pomeroy J. , and Lettenmaier D. , 2004: Parameterization of blowing-snow sublimation in a macroscale hydrology model. J. Hydrometeor., 5, 745762, doi:10.1175/1525-7541(2004)005<0745:POBSIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branfireun, B. A., and Roulet N. T. , 1998: The baseflow and storm flow hydrology of a precambrian shield headwater peatland. Hydrol. Processes, 12, 5772, doi:10.1002/(SICI)1099-1085(199801)12:1<57::AID-HYP560>3.0.CO;2-U.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1959: Open Channel Hydraulics. McGraw-Hill, 680 pp.

  • Clark, M. P., and Coauthors, 2015a: Improving the representation of hydrologic processes in Earth system models. Water Resour. Res., 51, 59295956, doi:10.1002/2015WR017096.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2015b: A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res., 51, 24982514, doi:10.1002/2015WR017198.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Alkama R. , Papa F. , Faroux S. , Douville H. , and Prigent C. , 2012: Global off-line evaluation of the ISBA-TRIP flood model. Climate Dyn., 38, 13891412, doi:10.1007/s00382-011-1054-9.

    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 1994: Physical Hydrology. Prentice-Hall Inc., 575 pp.

  • Dingman, S. L., 2002: Physical Hydrology. 2nd ed. Prentice-Hall Inc., 646 pp.

  • Duan, Q., and Coauthors, 2006: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol., 320, 317, doi:10.1016/j.jhydrol.2005.07.031.

    • Search Google Scholar
    • Export Citation
  • Dunne, T., 1978: Field studies of hillslope flow processes. Hillslope Hydrology, M. J. Kirkby, Ed., Wiley, 227–293.

  • Dunne, T., and Black R. D. , 1970a: An experimental investigation of runoff production in permeable soils. Water Resour. Res., 6, 478490, doi:10.1029/WR006i002p00478.

    • Search Google Scholar
    • Export Citation
  • Dunne, T., and Black R. D. , 1970b: Partial area contributions to storm runoff in a small New England watershed. Water Resour. Res., 6, 12961311, doi:10.1029/WR006i005p01296.

    • Search Google Scholar
    • Export Citation
  • Efstratiadis, A., and Koutsoyiannis D. , 2010: One decade of multi-objective calibration approaches in hydrological modelling: A review. Hydrol. Sci. J., 55, 5878, doi:10.1080/02626660903526292.

    • Search Google Scholar
    • Export Citation
  • Falge, E., and Coauthors, 2001: Gap filling strategies for long term energy flux data sets. Agric. For. Meteor., 107, 7177, doi:10.1016/S0168-1923(00)00235-5.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., Li H. , and Miguez-Macho G. , 2013: Global patterns of groundwater table depth. Science, 339, 940943, doi:10.1126/science.1229881.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and Pomeroy J. , 2009: Modelling blowing snow redistribution to prairie wetlands. Hydrol. Processes, 23, 25572569, doi:10.1002/hyp.7348.

    • Search Google Scholar
    • Export Citation
  • Freeze, R. A., and Cherry J. A. , 1979: Groundwater. Prentice-Hall, 604 pp.

  • Gao, H., and Coauthors, 2009: Water budget record from Variable Infiltration Capacity (VIC) model. Algorithm Theoretical Basis Doc., 56 pp. [Available online at http://www.hydro.washington.edu/SurfaceWaterGroup/Publications/Water_Cycle_MEaSUREs_ATBD_VICmodel_submit.doc.]

  • Ghan, S., Liljegren J. , Shaw W. , Hubbe J. , and Doran J. , 1997: Influence of subgrid variability on surface hydrology. J. Climate, 10, 31573166, doi:10.1175/1520-0442(1997)010<3157:IOSVOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., Yu W. , and Yates D. , 2013: The WRF-Hydro model technical description and user’s guide, version 1.0. NCAR Tech. Doc., 120 pp. [Available online at https://www.ral.ucar.edu/projects/wrf_hydro.]

  • Gupta, H. V., Sorooshian S. , and Yapo P. O. , 1998: Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res., 34, 751763, doi:10.1029/97WR03495.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Bastidas L. , Sorooshian S. , Shuttleworth W. , and Yang Z. , 1999: Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res., 104, 19 49119 503, doi:10.1029/1999JD900154.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Sorooshian S. , Hogue T. S. , and Boyle D. P. , 2003: Advances in automatic calibration of watershed models. Calibration of Watershed Models, Q. Duan et al., Eds., Water Science and Application Series, Vol. 6, Amer. Geophys. Union, 9–28.

  • Habets, F., and Coauthors, 1999: The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area: Part I: Model and database. J. Hydrol., 217, 7596, doi:10.1016/S0022-1694(99)00019-0.

    • Search Google Scholar
    • Export Citation
  • Harbaugh, A. W., Banta E. R. , Hill M. C. , and McDonald M. G. , 2000: MODFLOW-2000, the US Geological Survey modular ground-water model—User guide to modularization concepts and the ground-water flow process. USGS Open-File Rep. 00-92, 121 pp. [Available online at https://pubs.usgs.gov/of/2000/0092/report.pdf.]

  • Harrison, K. W., Kumar S. V. , Peters-Lidard C. D. , and Santanello J. A. , 2012: Quantifying the change in soil moisture modeling uncertainty from remote sensing observations using Bayesian inference techniques. Water Resour. Res., 48, W11514, doi:10.1029/2012WR012337.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., Pitman A. , Love P. , Irannejad P. , and Chen T. , 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76, 489503, doi:10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hess, R., 2001: Assimilation of screen-level observations by variational soil moisture analysis. Meteor. Atmos. Phys., 77, 145154, doi:10.1007/s007030170023.

    • Search Google Scholar
    • Export Citation
  • Hogue, T. S., Bastidas L. , Gupta H. , Sorooshian S. , Mitchell K. , and Emmerich W. , 2005: Evaluation and transferability of the Noah land surface model in semiarid environments. J. Hydrometeor., 6, 6884, doi:10.1175/JHM-402.1.

    • Search Google Scholar
    • Export Citation
  • Hollinger, D., and Richardson A. , 2005: Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol., 25, 873885, doi:10.1093/treephys/25.7.873.

    • Search Google Scholar
    • Export Citation
  • Horton, R. E., 1933: The role of infiltration in the hydrologic cycle. Eos, Trans. Amer. Geophys. Union, 14, 446460, doi:10.1029/TR014i001p00446.

    • Search Google Scholar
    • Export Citation
  • Huang, M., Hou Z. , Leung L. R. , Ke Y. , Liu Y. , Fang Z. , and Sun Y. , 2013: Uncertainty analysis of runoff simulations and parameter identifiability in the Community Land Model: Evidence from MOPEX basins. J. Hydrometeor., 14, 17541772, doi:10.1175/JHM-D-12-0138.1.

    • Search Google Scholar
    • Export Citation
  • Husain, S., Alavi N. , Bélair S. , Carrera M. , Zhang S. , Fortin V. , Abrahamowicz M. , and Gauthier N. , 2016: The multi-budget Soil, Vegetation, and Snow (SVS) scheme for land surface parameterization: Offline warm season evaluation. J. Hydrometeor., doi:10.1175/JHM-D-15-0228.1, in press.

    • Search Google Scholar
    • Export Citation
  • Ironside, G., 1991: Ecological land survey: Background and general approach. Guidelines for the integration of wildlife and habitat evaluations with ecological land survey, Environment Canada Tech. Rep., H. A. Stelfox, G. R. Ironside, and J. L. Kansas, Eds., 3–10. [Available online at http://agrienvarchive.ca/fed/download/wildlife_habitat_eval_ecol_land_surv91.pdf.]

  • Jajarmizadeh, M., Harun S. , and Salarpour M. , 2012: A review on theoretical consideration and types of models in hydrology. J. Environ. Sci. Technol., 5, 249, doi:10.3923/jest.2012.249.261.

    • Search Google Scholar
    • Export Citation
  • Jones, N. E., 2010: Incorporating lakes within the river discontinuum: Longitudinal changes in ecological characteristics in stream–lake networks. Can. J. Fish. Aquat. Sci., 67, 13501362, doi:10.1139/F10-069.

    • Search Google Scholar
    • Export Citation
  • Judd-Henrey, I., van der Kamp G. , Wismer M. , and Rodriguez-Prado A. , 2008: Assessment of ground and surface water conditions in the Prince Albert Model Forest Area. Saskatchewan Research Council Publication 11618-1E08, 47 pp.

  • Karvonen, T., Koivusalo H. , Jauhiainen M. , Palko J. , and Weppling K. , 1999: A hydrological model for predicting runoff from different land use areas. J. Hydrol., 217, 253265, doi:10.1016/S0022-1694(98)00280-7.

    • Search Google Scholar
    • Export Citation
  • Ke, Y., Leung L. , Huang M. , and Li H. , 2013: Enhancing the representation of subgrid land surface characteristics in land surface models. Geosci. Model Dev., 6, 16091622, doi:10.5194/gmd-6-1609-2013.

    • Search Google Scholar
    • Export Citation
  • Klemeš, V., 1986: Operational testing of hydrological simulation models. Hydrol. Sci. J., 31, 1324, doi:10.1080/02626668609491024.

  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Kouwen, N., and Mousavi S.-F. , 2002: WATFLOOD/SPL9 hydrological model & flood forecasting system. Mathematical Models of Large Watershed Hydrology, V. P. Singh and D. K. Frevert, Eds., Water Resources Publications, 649–685.

  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Leavesley, G., and Stannard L. , 1990: Application of remotely sensed data in a distributed-parameter watershed model. Applications of Remote Sensing in Hydrology, G. Kite and A. Wankiewicz, Eds., NHRI, 47–64.

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Bastidas L. A. , Gupta H. V. , and Sorooshian S. , 2003: Impacts of a parameterization deficiency on offline and coupled land surface model simulations. J. Hydrometeor., 4, 901914, doi:10.1175/1525-7541(2003)004<0901:IOAPDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Gupta H. V. , Sorooshian S. , Bastidas L. A. , and Shuttleworth W. J. , 2004: Exploring parameter sensitivities of the land surface using a locally coupled land–atmosphere model. J. Geophys. Res., 109, D21101, doi:10.1029/2004JD004730.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Gupta H. V. , Sorooshian S. , Bastidas L. A. , and Shuttleworth W. J. , 2005: Constraining land surface and atmospheric parameters of a locally coupled model using observational data. J. Hydrometeor., 6, 156172, doi:10.1175/JHM407.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Xia Y. , Mitchell K. E. , Ek M. B. , and Lettenmaier D. P. , 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738, doi:10.1175/2009JHM1174.1.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Nolte-Holube R. , and Raschke E. , 1996: A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus, 48A, 708721, doi:10.1034/j.1600-0870.1996.t01-3-00009.x.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Raschke E. , Nijssen B. , and Lettenmaier D. , 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131141, doi:10.1080/02626669809492107.

    • Search Google Scholar
    • Export Citation
  • MacDonald, M. K., 2010: Hydrological response unit-based blowing snow modelling over mountainous terrain. M.S. thesis, Dept. of Geography and Planning, University of Saskatchewan, 186 pp. [Available online at https://ecommons.usask.ca/handle/10388/etd-12202010-155704.]

  • MacDonald, M. K., Pomeroy J. W. , and Pietroniro A. , 2009: Parameterizing redistribution and sublimation of blowing snow for hydrological models: Tests in a mountainous subarctic catchment. Hydrol. Processes, 23, 25702583, doi:10.1002/hyp.7356.

    • Search Google Scholar
    • Export Citation
  • Mamo, M. T., 2015: Exploring the ability of a distributed hydrological land surface model in simulating hydrological processes in the boreal forest environment. M.S. thesis, Department of Civil and Geological Engineering, University of Saskatchewan, 153 pp.

  • Manabe, S., 1969: Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97, 739774, doi:10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marin, S., van der Kamp G. , Pietroniro A. , Davison B. , and Toth B. , 2010: Use of geological weighing lysimeters to calibrate a distributed hydrological model for the simulation of land–atmosphere moisture exchange. J. Hydrol., 383, 179185, doi:10.1016/j.jhydrol.2009.12.034.

    • Search Google Scholar
    • Export Citation
  • Matott, L. S., Babendreier J. E. , and Purucker S. T. , 2009: Evaluating uncertainty in integrated environmental models: A review of concepts and tools. Water Resour. Res., 45, W06421, doi:10.1029/2008WR007301.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and Kollet S. J. , 2008: Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci., 1, 665669, doi:10.1038/ngeo315.

    • Search Google Scholar
    • Export Citation
  • McDonnell, J. J., 2003: Where does water go when it rains? Moving beyond the variable source area concept of rainfall–runoff response. Hydrol. Processes, 17, 18691875, doi:10.1002/hyp.5132.

    • Search Google Scholar
    • Export Citation
  • McDonnell, J. J., 2013: Are all runoff processes the same? Hydrol. Processes, 27, 41034111, doi:10.1002/hyp.10076.

  • McDonnell, J. J., and Coauthors, 2007: Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour. Res., 43, W07301, doi:10.1029/2006WR005467.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, M., Wheater H. , Ireson A. , Spence C. , Davison B. , and Pietroniro A. , 2014: Towards an improved land surface scheme for prairie landscapes. J. Hydrol., 511, 105116, doi:10.1016/j.jhydrol.2014.01.020.

    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., Clark M. P. , Barlage M. , Rajagopalan B. , Samaniego L. , Abramowitz G. , and Gupta H. , 2015: Are we unnecessarily constraining the agility of complex process-based models? Water Resour. Res., 51, 716728, doi:10.1002/2014WR015820.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Fan Y. , 2012a: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res., 117, D15113, doi:10.1029/2012JD017539.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Fan Y. , 2012b: The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res., 117, D15114, doi:10.1029/2012JD017540.

    • Search Google Scholar
    • Export Citation
  • Mingelbier, M., Brodeur P. , and Morin J. , 2008: Spatially explicit model predicting the spawning habitat and early stage mortality of northern pike (Esox lucius) in a large system: The St. Lawrence River between 1960 and 2000. Hydrobiologia, 601, 5569, doi:10.1007/s10750-007-9266-z.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K., 2005: The community Noah land-surface model (LSM) user’s guide, version 2.7.1. NOAA/NCEP Doc., 26 pp. [Available online at ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1.]

  • Moncrieff, J. B., and Coauthors, 1997: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol., 188–189, 589611, doi:10.1016/S0022-1694(96)03194-0.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, K., and Coauthors, 2004: Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle. Agric. For. Meteor., 123, 201219, doi:10.1016/j.agrformet.2003.12.003.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D., Arnold J. , Van Liew M. , Bingner R. , Harmel R. , and Veith T. , 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, doi:10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Morin, J., Champoux O. , Mingelbier M. , Bechara J. A. , Secretan Y. , Jean M. , and Frenette J.-J. , 2003: Emergence of new explanatory variables for 2D habitat modelling in large rivers: The St. Lawrence experience. Can. Water Resour. J., 28, 249272, doi:10.4296/cwrj2802249.

    • Search Google Scholar
    • Export Citation
  • Nash, J., and Sutcliffe J. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Nasonova, O. N., Gusev Y. M. , and Kovalev Y. E. , 2009: Investigating the ability of a land surface model to simulate streamflow with the accuracy of hydrological models: A case study using MOPEX materials. J. Hydrometeor., 10, 11281150, doi:10.1175/2009JHM1083.1.

    • Search Google Scholar
    • Export Citation
  • Natural Resources Canada, 2007: Canadian Digital Elevation Data, level 1 product specifications. NRC Doc., 48 pp. [Available online at http://ftp2.cits.rncan.gc.ca/pub/geobase/official/cded/doc/GeoBase_product_specs_CDED1_en.pdf.]

  • Natural Resources Canada, 2015: Land cover, circa 2000—Vector. NRC Doc., 7 pp. [Available online at http://wmsmir.cits.rncan.gc.ca/index.html/pub/geobase/official/lcc2000v_csc2000v/doc/Land_Cover.pdf.]

  • Nazemi, A., and Wheater H. , 2015a: On inclusion of water resource management in Earth system models—Part 1: Problem definition and representation of water demand. Hydrol. Earth Syst. Sci., 19, 3361, doi:10.5194/hess-19-33-2015.

    • Search Google Scholar
    • Export Citation
  • Nazemi, A., and Wheater H. , 2015b: On inclusion of water resource management in Earth system models—Part 2: Representation of water supply and allocation and opportunities for improved modeling. Hydrol. Earth Syst. Sci., 19, 6390, doi:10.5194/hess-19-63-2015.

    • Search Google Scholar
    • Export Citation
  • Neumann, N., and Marsh P. , 1998: Local advection of sensible heat in the snowmelt landscape of arctic tundra. Hydrol. Processes, 12, 15471560, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1547::AID-HYP680>3.0.CO;2-Z.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and Lettenmaier D. P. , 2002: Water balance dynamics of a boreal forest watershed: White Gull Creek basin, 1994–1996. Water Resour. Res., 38, 1255, doi:10.1029/2001WR000699.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Zeng X. , 2012: Earth system model, modeling the land component of. Climate Change Modeling Methodology, P. J. Rasch, Ed., Springer, 139–168, doi:10.1007/978-1-4614-5767-1_7.

  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , and Gulden L. E. , 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110, D21106, doi:10.1029/2005JD006111.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., doi:10.5065/D6FB50WZ.

  • ORNL DAAC, 2015: FLUXNET web page. Accessed 13 June 2016. [Available online at http://fluxnet.ornl.gov.]

  • Pappenberger, F., Cloke H. , Balsamo G. , Ngo-Duc T. , and Oki T. , 2010: Global runoff routing with the hydrological component of the ECMWF NWP system. Int. J. Climatol., 30, 21552174, doi:10.1002/joc.2028.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., Mocko D. M. , Garcia M. , Santanello J. A. , Tischler M. A. , Moran M. S. , and Wu Y. , 2008: Role of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semiarid environment. Water Resour. Res., 44, W05S18, doi:10.1029/2007WR005884.

    • Search Google Scholar
    • Export Citation
  • Pietroniro, A., and Coauthors, 2007: Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale. Hydrol. Earth Syst. Sci., 11, 12791294, doi:10.5194/hess-11-1279-2007.

    • Search Google Scholar
    • Export Citation
  • Pitman, A., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23, 479510, doi:10.1002/joc.893.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y., Hanasaki N. , Koirala S. , Cho J. , Yeh P. J.-F. , Kim H. , Kanae S. , and Oki T. , 2012: Incorporating anthropogenic water regulation modules into a land surface model. J. Hydrometeor., 13, 255269, doi:10.1175/JHM-D-11-013.1.

    • Search Google Scholar
    • Export Citation
  • Price, J., and Waddington J. , 2000: Advances in Canadian wetland hydrology and biogeochemistry. Hydrol. Processes, 14, 15791589, doi:10.1002/1099-1085(20000630)14:9<1579::AID-HYP76>3.0.CO;2-#.

    • Search Google Scholar
    • Export Citation
  • Reed, P. M., Hadka D. , Herman J. D. , Kasprzyk J. R. , and Kollat J. B. , 2013: Evolutionary multiobjective optimization in water resources: The past, present, and future. Adv. Water Resour., 51, 438456, doi:10.1016/j.advwatres.2012.01.005.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and Yau M. , 1989: A Short Course in Cloud Physics. 3rd ed. International Series in Natural Philosophy, Vol. 113, Butterworth Heinemann, 304 pp.

  • Samaniego, L., Kumar R. , and Attinger S. , 2010: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, W05523, doi:10.1029/2008WR007327.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., Peters-Lidard C. D. , Garcia M. E. , Mocko D. M. , Tischler M. A. , Moran M. S. , and Thoma D. , 2007: Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed. Remote Sens. Environ., 110, 7997, doi:10.1016/j.rse.2007.02.007.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., Peters-Lidard C. D. , Kennedy A. , and Kumar S. V. , 2013: Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet extremes in the U.S. Southern Great Plains. J. Hydrometeor., 14, 324, doi:10.1175/JHM-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Koren V. I. , Duan Q.-Y. , Mitchell K. , and Chen F. , 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, doi:10.1029/95JD02892.

    • Search Google Scholar
    • Export Citation
  • Schottler, S. P., Ulrich J. , Belmont P. , Moore R. , Lauer J. , Engstrom D. R. , and Almendinger J. E. , 2014: Twentieth century agricultural drainage creates more erosive rivers. Hydrol. Processes, 28, 19511961, doi:10.1002/hyp.9738.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997a: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502509, doi:10.1126/science.275.5299.502.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997b: Boreas in 1997: Experiment overview, scientific results, and future directions. J. Geophys. Res., 102, 28 73128 769, doi:10.1029/97JD03300.

    • Search Google Scholar
    • Export Citation
  • Soulis, E. D., and Seglenieks F. R. , 2008: The MAGS integrated modeling system. Hydrologic Processes, Vol. 2, Cold Region Atmospheric and Hydrologic Studies: The Mackenzie GEWEX Experience, Springer, 445–473, doi:10.1007/978-3-540-75136-6_24.

  • Soulis, E. D., Snelgrove K. , Kouwen N. , Seglenieks F. , and Verseghy D. , 2000: Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme CLASS with the distributed hydrological model WATFLOOD. Atmos.–Ocean, 38, 251269, doi:10.1080/07055900.2000.9649648.

    • Search Google Scholar
    • Export Citation
  • Soulis, E. D., Craig J. , Fortin V. , and Liu G. , 2011: A simple expression for the bulk field capacity of a sloping soil horizon. Hydrol. Processes, 25, 112116, doi:10.1002/hyp.7827.

    • Search Google Scholar
    • Export Citation
  • Spence, C., 2010: A paradigm shift in hydrology: Storage thresholds across scales influence catchment runoff generation. Geogr. Compass, 4, 819833, doi:10.1111/j.1749-8198.2010.00341.x.

    • Search Google Scholar
    • Export Citation
  • Takata, K., Emori S. , and Watanabe T. , 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Taylor, R. G., and Coauthors, 2013: Ground water and climate change. Nat. Climate Change, 3, 322329, doi:10.1038/nclimate1744.

  • Todini, E., 1988: Rainfall–runoff modeling—Past, present and future. J. Hydrol., 100, 341352, doi:10.1016/0022-1694(88)90191-6.

  • Tolson, B. A., and Shoemaker C. A. , 2007: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res., 43, W01413, doi:10.1029/2005WR004723.

    • Search Google Scholar
    • Export Citation
  • van der Kamp, G., and Hayashi M. , 2009: Groundwater–wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol. J., 17, 203214, doi:10.1007/s10040-008-0367-1.

    • Search Google Scholar
    • Export Citation
  • Vergnes, J.-P., Decharme B. , Alkama R. , Martin E. , Habets F. , and Douville H. , 2012: A simple groundwater scheme for hydrological and climate applications: Description and offline evaluation over France. J. Hydrometeor., 13, 11491171, doi:10.1175/JHM-D-11-0149.1.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D., 1991: CLASS—A Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol., 11, 111133, doi:10.1002/joc.3370110202.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D., 2011: CLASS—The Canadian land surface scheme (version 3.5): Technical documentation (version 1). Environment Canada, 180 pp.

  • Verseghy, D., McFarlane N. , and Lazare M. , 1993: CLASS—A Canadian land surface scheme for GCMs. II. Vegetation model and coupled runs. Int. J. Climatol., 13, 347370, doi:10.1002/joc.3370130402.

    • Search Google Scholar
    • Export Citation
  • Vionnet, V., Martin E. , Masson V. , Guyomarc’h G. , Bouvet F. N. , Prokop A. , Durand Y. , and Lac C. , 2014: Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. Cryosphere, 8, 395415, doi:10.5194/tc-8-395-2014.

    • Search Google Scholar
    • Export Citation
  • Voisin, N., Li H. , Ward D. , Huang M. , Wigmosta M. , and Leung L. , 2013a: On an improved sub-regional water resources management representation for integration into Earth system models. Hydrol. Earth Syst. Sci., 17, 36053622, doi:10.5194/hess-17-3605-2013.

    • Search Google Scholar
    • Export Citation
  • Voisin, N., Liu L. , Hejazi M. , Tesfa T. , Li H. , Huang M. , Liu Y. , and Leung L. , 2013b: One-way coupling of an integrated assessment model and a water resources model: Evaluation and implications of future changes over the US Midwest. Hydrol. Earth Syst. Sci., 17, 45554575, doi:10.5194/hess-17-4555-2013.

    • Search Google Scholar
    • Export Citation
  • Weiler, M., McDonnell J. J. , Tromp-van Meerveld I. , and Uchida T. , 2005: Subsurface stormflow. Rainfall–Runoff Processes, Part 10, Encyclopedia of Hydrological Sciences, M. G. Anderson, Ed., Wiley, 112.

  • Wood, E. F., and Coauthors, 2011: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res., 47, W05301, doi:10.1029/2010WR010090.

    • Search Google Scholar
    • Export Citation
  • Xie, Z., Yuan F. , Duan Q. , Zheng J. , Liang M. , and Chen F. , 2007: Regional parameter estimation of the VIC land surface model: Methodology and application to river basins in China. J. Hydrometeor., 8, 447468, doi:10.1175/JHM568.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., 2004: Modeling land surface processes in short-term weather and climate studies. Observation, Theory and Modeling of Atmospheric Variability, X. Zhu et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 3, World Scientific, 288313, doi:10.1142/9789812791139_0014.

  • Zulkafli, Z., Buytaert W. , Onof C. , Lavado W. , and Guyot J.-L. , 2013: A critical assessment of the JULES land surface model hydrology for humid tropical environments. Hydrol. Earth Syst. Sci., 17, 11131132, doi:10.5194/hess-17-1113-2013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1693 939 113
PDF Downloads 431 62 2