Assessing the Efficacy of High-Resolution Satellite-Based PERSIANN-CDR Precipitation Product in Simulating Streamflow

Hamed Ashouri Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Hamed Ashouri in
Current site
Google Scholar
PubMed
Close
,
Phu Nguyen Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Phu Nguyen in
Current site
Google Scholar
PubMed
Close
,
Andrea Thorstensen Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Andrea Thorstensen in
Current site
Google Scholar
PubMed
Close
,
Kuo-lin Hsu Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Kuo-lin Hsu in
Current site
Google Scholar
PubMed
Close
,
Soroosh Sorooshian Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Soroosh Sorooshian in
Current site
Google Scholar
PubMed
Close
, and
Dan Braithwaite Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Dan Braithwaite in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study aims to investigate the performance of Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) in a rainfall–runoff modeling application over the past three decades. PERSIANN-CDR provides precipitation data at daily and 0.25° temporal and spatial resolutions from 1983 to present for the 60°S–60°N latitude band and 0°–360° longitude. The study is conducted in two phases over three test basins from the Distributed Hydrologic Model Intercomparison Project, phase 2 (DMIP2). In phase 1, a more recent period of time (2003–10) when other high-resolution satellite-based precipitation products are available is chosen. Precipitation evaluation analysis, conducted against stage IV gauge-adjusted radar data, shows that PERSIANN-CDR and TRMM Multisatellite Precipitation Analysis (TMPA) have close performances with a higher correlation coefficient for TMPA (~0.8 vs 0.75 for PERSIANN-CDR) and almost the same root-mean-square deviation (~6) for both products. TMPA and PERSIANN-CDR outperform PERSIANN, mainly because, unlike PERSIANN, TMPA and PERSIANN-CDR are gauge-adjusted precipitation products. The National Weather Service Office of Hydrologic Development Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) is then forced with PERSIANN, PERSIANN-CDR, TMPA, and stage IV data. Quantitative analysis using five different statistical and model efficiency measures against USGS streamflow observation show that in general in all three DMIP2 basins, the simulated hydrographs forced with PERSIANN-CDR and TMPA have close agreement. Given the promising results in the first phase, the simulation process is extended back to 1983 where only PERSIANN-CDR rainfall estimates are available. The results show that PERSIANN-CDR-derived streamflow simulations are comparable to USGS observations with correlation coefficients of ~0.67–0.73, relatively low biases (~5%–12%), and high index of agreement criterion (~0.68–0.83) between PERSIANN-CDR-simulated daily streamflow and USGS daily observations. The results prove the capability of PERSIANN-CDR in hydrological rainfall–runoff modeling application, especially for long-term streamflow simulations over the past three decades.

Current affiliation: AIR Worldwide, Boston, Massachusetts.

Corresponding author address: Hamed Ashouri, Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, E/4130 Engineering Gateway, Irvine, CA 92617. E-mail: h.ashouri@uci.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

This study aims to investigate the performance of Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) in a rainfall–runoff modeling application over the past three decades. PERSIANN-CDR provides precipitation data at daily and 0.25° temporal and spatial resolutions from 1983 to present for the 60°S–60°N latitude band and 0°–360° longitude. The study is conducted in two phases over three test basins from the Distributed Hydrologic Model Intercomparison Project, phase 2 (DMIP2). In phase 1, a more recent period of time (2003–10) when other high-resolution satellite-based precipitation products are available is chosen. Precipitation evaluation analysis, conducted against stage IV gauge-adjusted radar data, shows that PERSIANN-CDR and TRMM Multisatellite Precipitation Analysis (TMPA) have close performances with a higher correlation coefficient for TMPA (~0.8 vs 0.75 for PERSIANN-CDR) and almost the same root-mean-square deviation (~6) for both products. TMPA and PERSIANN-CDR outperform PERSIANN, mainly because, unlike PERSIANN, TMPA and PERSIANN-CDR are gauge-adjusted precipitation products. The National Weather Service Office of Hydrologic Development Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) is then forced with PERSIANN, PERSIANN-CDR, TMPA, and stage IV data. Quantitative analysis using five different statistical and model efficiency measures against USGS streamflow observation show that in general in all three DMIP2 basins, the simulated hydrographs forced with PERSIANN-CDR and TMPA have close agreement. Given the promising results in the first phase, the simulation process is extended back to 1983 where only PERSIANN-CDR rainfall estimates are available. The results show that PERSIANN-CDR-derived streamflow simulations are comparable to USGS observations with correlation coefficients of ~0.67–0.73, relatively low biases (~5%–12%), and high index of agreement criterion (~0.68–0.83) between PERSIANN-CDR-simulated daily streamflow and USGS daily observations. The results prove the capability of PERSIANN-CDR in hydrological rainfall–runoff modeling application, especially for long-term streamflow simulations over the past three decades.

Current affiliation: AIR Worldwide, Boston, Massachusetts.

Corresponding author address: Hamed Ashouri, Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, E/4130 Engineering Gateway, Irvine, CA 92617. E-mail: h.ashouri@uci.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save
  • Anagnostou, E. N., Maggioni V. , Nikolopoulos E. I. , Meskele T. , Hossain F. , and Papadopoulos A. , 2010: Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens., 48, 16671683, doi:10.1109/TGRS.2009.2034736.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., Hsu K.-L. , Sorooshian S. , Braithwaite D. K. , Knapp K. R. , Cecil L. D. , Nelson B. R. , and Prat O. P. , 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, doi:10.1175/BAMS-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., Sorooshian S. , Hsu K. , Bosilovich M. G. , Lee J. , and Wehner M. F. , 2016: Evaluation of NASA’s MERRA precipitation product in reproducing the observed trend and distribution of extreme precipitation events in the United States. J. Hydrometeor., 17, 693711, doi:10.1175/JHM-D-15-0097.1.

    • Search Google Scholar
    • Export Citation
  • Bajracharya, S. R., Palash W. , Shrestha M. S. , Khadgi V. R. , Duo C. , Das P. J. , and Dorji C. , 2015: Systematic evaluation of satellite-based rainfall products over the Brahmaputra basin for hydrological applications. Adv. Meteor., 2015, 398687, doi:10.1155/2015/398687.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Khakbaz B. , Jaw T. C. , AghaKouchak A. , Hsu K. , and Sorooshian S. , 2011: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 397, 225237, doi:10.1016/j.jhydrol.2010.11.043.

    • Search Google Scholar
    • Export Citation
  • Bergstrom, S., 1995: The HBV model. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 443–476.

  • Beven, K. J., 2011: Rainfall–Runoff Modelling: The Primer. Wiley, 488 pp.

  • Burnash, R. J. C., Ferral R. L. , and McGuire R. A. , 1973: A generalized streamflow simulation system: Conceptual modeling for digital computers. NWS/California Department of Water Resources Tech. Rep., 204 pp.

  • Burroughs, W., 2003: Climate into the 21st Century. Cambridge University Press, 240 pp.

  • Casse, C., and Gosset M. , 2015: Analysis of hydrological changes and flood increase in Niamey based on the PERSIANN-CDR satellite rainfall estimate and hydrological simulations over the 1983–2013 period. Proc. IAHS, 370, 117123, doi:10.5194/piahs-370-117-2015.

    • Search Google Scholar
    • Export Citation
  • Ceccherini, G., Ameztoy I. , Hernández C. P. R. , and Moreno C. C. , 2015: High-resolution precipitation datasets in South America and West Africa based on satellite-derived rainfall, enhanced vegetation index and digital elevation model. Remote Sens., 7, 64546488, doi:10.3390/rs70506454.

    • Search Google Scholar
    • Export Citation
  • Ciabatta, L., Brocca L. , Massari C. , Moramarco T. , Gabellani S. , Puca S. , and Wagner W. , 2016: Rainfall–runoff modelling by using SM2RAIN-derived and state-of-the-art satellite rainfall products over Italy. Int. J. Appl. Earth Obs. Geoinf., 48, 163173, doi:10.1016/j.jag.2015.10.004.

    • Search Google Scholar
    • Export Citation
  • Collischonn, B., Collischonn W. , and Morelli Tucci C. E. , 2008: Daily hydrological modeling in the Amazon basin using TRMM rainfall estimators. J. Hydrol., 360, 207216, doi:10.1016/j.jhydrol.2008.07.032.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Estupina-Borrell, V., Dartus D. , and Ababou R. , 2006: Flash flood modeling with the MARINE hydrological distributed model. Hydrol. Earth System Sci. Discuss., 3, 33973438, doi:10.5194/hessd-3-3397-2006.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., Breidenbach J. P. , Seo D. J. , Miller D. A. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guetter, A. K., Georgakakos K. P. , and Tsonis A. A. , 1996: Hydrologic applications of satellite data: 2. Flow simulation and soil water estimates. J. Geophys. Res., 101, 26 52726 538, doi:10.1029/96JD01655.

    • Search Google Scholar
    • Export Citation
  • Guo, H., Chen S. , Bao A. , Hu J. , Gebregiorgis A. S. , Xue X. , and Zhang X. , 2015: Inter-comparison of high-resolution satellite precipitation products over central Asia. Remote Sens., 7, 71817211, doi:10.3390/rs70607181.

    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., Leung L. R. , Yoon J. H. , Lu J. , and Gao Y. , 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the large ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, doi:10.1002/2015GL067392.

    • Search Google Scholar
    • Export Citation
  • Harris, A., Rahman S. , Hossain F. , Yarborough L. , Bagtzoglou A. C. , and Easson G. , 2007: Satellite-based flood modeling using TRMM-based rainfall products. Sensors, 7, 34163427, doi:10.3390/s7123416.

    • Search Google Scholar
    • Export Citation
  • Hogue, T. S., Sorooshian S. , Gupta H. , Holz A. , and Braatz D. , 2000: A multistep automatic calibration scheme for river forecasting models. J. Hydrometeor., 1, 524542, doi:10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Adler R. , and Huffman G. , 2006: Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett., 33, L22402, doi:10.1029/2006GL028010.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteor. Climatol., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gupta H. V. , Gao X. , and Sorooshian S. , 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35, 16051618, doi:10.1029/1999WR900032.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Bolvin D. T. , 2013: GPCP version 2.2 SG combined precipitation data set documentation. NASA GSFC Doc., 46 pp. [Available online at ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/doc/V2.2_doc.pdf.]

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Nelkin E. J. , 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, doi:10.1007/978-90-481-2915-7_1.

  • Huffman, G. J., Bolvin D. T. , Braithwaite D. , Hsu K. , Joyce R. , Kidd C. , Nelkin E. J. , and Xie P. , 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.]

  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khakbaz, B., Imam B. , Hsu K. , and Sorooshian S. , 2012: From lumped to distributed via semi-distributed: Calibration strategies for semi-distributed hydrologic models. J. Hydrol., 418–419, 6177, doi:10.1016/j.jhydrol.2009.02.021.

    • Search Google Scholar
    • Export Citation
  • Kim, G., and Barros A. P. , 2001: Quantitative flood forecasting using multisensor data and neural networks. J. Hydrol., 246, 4562, doi:10.1016/S0022-1694(01)00353-5.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., 2008a: Scientific data stewardship of International Satellite Cloud Climatology Project B1 global geostationary observations. J. Appl. Remote Sens., 2, 023548, doi:10.1117/1.3043461.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., 2008b: Calibration assessment of ISCCP geostationary infrared observations using HIRS. J. Atmos. Oceanic Technol., 25, 183195, doi:10.1175/2007JTECHA910.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, doi:10.1175/2011BAMS3039.1.

    • Search Google Scholar
    • Export Citation
  • Koren, V., and Barrett C. B. , 1994: Satellite based distributed monitoring, forecasting and simulation (MFS) system for the Nile River. Proc. Int. Workshop on Application of Remote Sensing in Hydrology, NHRI Symp. 14, Saskatoon, Canada, NHRI, 187–200.

  • Koren, V., Smith M. , and Duan Q. , 2003: Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall–runoff models. Calibration of Watershed Models, Q. Duan et al., Eds., Water Science and Application Series, Vol. 6, Amer. Geophys. Union, 239–254.

  • Koren, V., Reed S. , Smith M. , Zhang Z. , and Seo D.-J. , 2004: Hydrology laboratory research modeling system (HL-RMS) of the US National Weather Service. J. Hydrol., 291, 297318, doi:10.1016/j.jhydrol.2003.12.039.

    • Search Google Scholar
    • Export Citation
  • Koren, V., Smith M. , Cui Z. , and Cosgrove B. , 2007: Physically-based modifications to the Sacramento Soil Moisture Accounting model: Modeling the effects of frozen ground on the rainfall–runoff process. NOAA Tech. Rep. NWS 52, 43 pp. [Available online at www.nws.noaa.gov/oh/hrl/hsmb/docs/hydrology/PBE_SAC-SMA/NOAA_Technical_Report_NWS_52.pdf.]

  • Kuzmin, V., Seo D.-J. , and Koren V. , 2008: Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search. J. Hydrol., 353, 109128, doi:10.1016/j.jhydrol.2008.02.001.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and McCabe G. J. Jr., 1999: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35, 233241, doi:10.1029/1998WR900018.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Luchetti, N. T., Sutton J. R. , Wright E. E. , Kruk M. C. , and Marra J. J. , 2016: When El Niño rages: How satellite data can help water-stressed islands. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00219.1, in press.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., Vergara H. J. , Anagnostou E. N. , Gourley J. J. , Hong Y. , and Stampoulis D. , 2013: Investigating the applicability of error correction ensembles of satellite rainfall products in river flow simulations. J. Hydrometeor., 14, 11941211, doi:10.1175/JHM-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Miao, C., Ashouri H. , Hsu K.-L. , Sorooshian S. , and Duan Q. , 2015: Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeor., 16, 13871396, doi:10.1175/JHM-D-14-0174.1.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Nguyen, P., Sellars S. , Thorstensen A. , Tao Y. , Ashouri H. , Braithwaite D. , Hsu K. , and Sorooshian S. , 2014: Satellites track precipitation of Super Typhoon Haiyan. Eos, Trans. Amer. Geophys. Union, 95, 133135, doi:10.1002/2014EO160002.

    • Search Google Scholar
    • Export Citation
  • Nguyen, P., Thorstensen A. , Sorooshian S. , Hsu K. , and AghaKouchak A. , 2015: Flood forecasting and inundation mapping using HiResFlood-UCI and near-real-time satellite precipitation data: The 2008 Iowa flood. J. Hydrometeor., 16, 11711183, doi:10.1175/JHM-D-14-0212.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, P., and Coauthors, 2016: A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling. J. Hydrol., doi:10.1016/j.jhydrol.2015.10.047, in press.

    • Search Google Scholar
    • Export Citation
  • NWS, 2011: Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) user manual V. 3.2.0. National Weather Service Rep., 79 pp.

  • Piotrowski, A., Napiorkowski J. J. , and Rowinski P. M. , 2006: Flash-flood forecasting by means of neural networks and nearest neighbour approach—A comparative study. Nonlinear Processes Geophys., 13, 443448, doi:10.5194/npg-13-443-2006.

    • Search Google Scholar
    • Export Citation
  • Qi, W., Zhang C. , Fu G. , Sweetapple C. , and Zhou H. , 2016: Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations. Hydrol. Earth Syst. Sci., 20, 903920, doi:10.5194/hess-20-903-2016.

    • Search Google Scholar
    • Export Citation
  • Reed, S., Schaake J. , and Zhang Z. , 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420, doi:10.1016/j.jhydrol.2007.02.015.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Schiffer R. A. , 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Garder L. C. , 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6, 23412369, doi:10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sahoo, G. B., Ray C. , and De Carlo E. H. , 2006: Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. J. Hydrol., 327, 94109, doi:10.1016/j.jhydrol.2005.11.012.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Fuchs T. , Meyer-Christoffer A. , and Rudolf B. , 2008: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre Doc., DWD, 14 pp. [Available online at ftp://ftp.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_2008.pdf.]

  • Seyyedi, H., Anagnostou E. N. , Beighley E. , and McCollum J. , 2015: Hydrologic evaluation of satellite and reanalysis precipitation datasets over a mid-latitude basin. Atmos. Res., 164–165, 3748, doi:10.1016/j.atmosres.2015.03.019.

    • Search Google Scholar
    • Export Citation
  • Sirdas, S., and Sen Z. , 2007: Determination of flash floods in western Arabian Peninsula. J. Hydrol. Eng., 12, 676681, doi:10.1061/(ASCE)1084-0699(2007)12:6(676).

    • Search Google Scholar
    • Export Citation
  • Smith, M. B., Seo D.-J. , Koren V. I. , Reed S. M. , Zhang Z. , Duan Q. , Moreda F. , and Cong S. , 2004: The distributed model intercomparison project (DMIP): Motivation and experiment design. J. Hydrol., 298, 426, doi:10.1016/j.jhydrol.2004.03.040.

    • Search Google Scholar
    • Export Citation
  • Smith, M. B., and Coauthors, 2012a: The distributed model intercomparison project—Phase 2: Motivation and design of the Oklahoma experiments. J. Hydrol., 418–419, 316, doi:10.1016/j.jhydrol.2011.08.055.

    • Search Google Scholar
    • Export Citation
  • Smith, M. B., and Coauthors, 2012b: Results of the DMIP 2 Oklahoma experiments. J. Hydrol., 418–419, 1748, doi:10.1016/j.jhydrol.2011.08.056.

    • Search Google Scholar
    • Export Citation
  • Solmon, F., Nair V. S. , and Mallet M. , 2015: Increasing Arabian dust activity and the Indian summer monsoon. Atmos. Chem. Phys., 15, 80518064, doi:10.5194/acp-15-8051-2015.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K.-L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stisen, S., and Sandholt I. , 2010: Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modeling. Hydrol. Processes, 24, 879891, doi:10.1002/hyp.7529.

    • Search Google Scholar
    • Export Citation
  • Su, F. G., Hong Y. , and Lettenmaier D. P. , 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in La Plata basin. J. Hydrometeor., 9, 622640, doi:10.1175/2007JHM944.1.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., Reed P. , Van Werkhoven K. , and Wagener T. , 2007: Advancing the identification and evaluation of distributed rainfall–runoff models using global sensitivity analysis. Water Resour. Res., 43, W06415, doi:10.1029/2006WR005813.

    • Search Google Scholar
    • Export Citation
  • Thiemig, V., Rojas R. , Zambrano-Bigiarini M. , and Roo A. D. , 2013: Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro–Akobo basin. J. Hydrol., 499, 324338, doi:10.1016/j.jhydrol.2013.07.012.

    • Search Google Scholar
    • Export Citation
  • Turk, J. T., Mostovoy G. V. , and Anantharaj V. , 2010: The NRL-Blend high resolution precipitation product and its application to land surface hydrology. Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 85–104, doi:10.1007/978-90-481-2915-7_6.

  • Wagener, T., van Werkhoven K. , Reed P. , and Tang Y. , 2009: Multiobjective sensitivity analysis to understand the information content in streamflow observations for distributed watershed modeling. Water Resour. Res., 45, W02501, doi:10.1029/2008WR007347.

    • Search Google Scholar
    • Export Citation
  • Willmot, C. J., 1984: On the evaluation of model performance in physical geography. Spatial Statistics and Models, G. L. Gaile and C. J. Willmot, Eds., D. Reidel, 443–460.

  • Yang, X., Yong B. , Yong H. , Chen S. , and Zhang X. , 2016: Error analysis of multi-satellite precipitation estimates with an independent raingauge observation network over a medium-sized humid basin. Hydrol. Sci. J., 61, 18131830, doi:10.1080/02626667.2015.1040020.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., Hogue T. S. , Hsu K. L. , Sorooshian S. , Gupta H. V. , and Wagener T. , 2005: Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeor., 6, 497517, doi:10.1175/JHM431.1.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., Gupta H. V. , and Wagener T. , 2008: A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resour. Res., 44, W09417, doi:10.1029/2007WR006716.

    • Search Google Scholar
    • Export Citation
  • Yong, B., 2015: Comments on “Error analysis of satellite precipitation products in mountainous basins.” J. Hydrometeor., 16, 14431444, doi:10.1175/JHM-D-14-0202.1.

    • Search Google Scholar
    • Export Citation
  • Zeweldi, D. A., and Gebremichael M. , 2009: Evaluation of CMORPH precipitation products at fine space–time scales. J. Hydrometeor., 10, 300307, doi:10.1175/2008JHM1041.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4454 3338 389
PDF Downloads 756 163 5