Influence of Below-Cloud Evaporation on Deuterium Excess in Precipitation of Arid Central Asia and Its Meteorological Controls

Shengjie Wang College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China

Search for other papers by Shengjie Wang in
Current site
Google Scholar
PubMed
Close
,
Mingjun Zhang College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China

Search for other papers by Mingjun Zhang in
Current site
Google Scholar
PubMed
Close
,
Yanjun Che College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China

Search for other papers by Yanjun Che in
Current site
Google Scholar
PubMed
Close
,
Xiaofan Zhu College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China

Search for other papers by Xiaofan Zhu in
Current site
Google Scholar
PubMed
Close
, and
Xuemei Liu College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China

Search for other papers by Xuemei Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The deuterium excess is a second-order parameter linking water-stable oxygen and hydrogen isotopes and has been widely used in hydrological studies. The deuterium excess in precipitation is greatly influenced by below-cloud evaporation through unsaturated air, especially in an arid climate. Based on an observation network of isotopes in precipitation of arid central Asia, the difference in deuterium excess from cloud base to ground was calculated for each sampling site. The difference on the southern slope of the Tian Shan is generally larger than that on the northern slope, and the difference during the summer months is greater than that during the winter months. Generally, an increase of 1% in evaporation of raindrops causes deuterium excess to decrease by approximately 1‰. Under conditions of low air temperature, high relative humidity, heavy precipitation, and large raindrop diameter, a good linear correlation is exhibited between evaporation proportion and difference in deuterium excess, and a linear regression slope of <1‰ %−1 can be seen; in contrast, under conditions of high air temperature, low relative humidity, light precipitation, and small raindrop diameter, the linear relationship is relatively weak, and the slope is much larger than 1‰ %−1. A sensitivity analysis under different climate scenarios indicates that, if air temperature has increased by 5°C, deuterium excess difference decreases by 0.3‰–4.0‰ for each site; if relative humidity increases by 10%, deuterium excess difference increases by 1.1‰–10.3‰.

Corresponding author address: Mingjun Zhang, College of Geography and Environmental Science, Northwest Normal University, No. 27, Qiujiawan, Anning District, Lanzhou, Gansu 730070, China. E-mail: mjzhang2004@163.com

Abstract

The deuterium excess is a second-order parameter linking water-stable oxygen and hydrogen isotopes and has been widely used in hydrological studies. The deuterium excess in precipitation is greatly influenced by below-cloud evaporation through unsaturated air, especially in an arid climate. Based on an observation network of isotopes in precipitation of arid central Asia, the difference in deuterium excess from cloud base to ground was calculated for each sampling site. The difference on the southern slope of the Tian Shan is generally larger than that on the northern slope, and the difference during the summer months is greater than that during the winter months. Generally, an increase of 1% in evaporation of raindrops causes deuterium excess to decrease by approximately 1‰. Under conditions of low air temperature, high relative humidity, heavy precipitation, and large raindrop diameter, a good linear correlation is exhibited between evaporation proportion and difference in deuterium excess, and a linear regression slope of <1‰ %−1 can be seen; in contrast, under conditions of high air temperature, low relative humidity, light precipitation, and small raindrop diameter, the linear relationship is relatively weak, and the slope is much larger than 1‰ %−1. A sensitivity analysis under different climate scenarios indicates that, if air temperature has increased by 5°C, deuterium excess difference decreases by 0.3‰–4.0‰ for each site; if relative humidity increases by 10%, deuterium excess difference increases by 1.1‰–10.3‰.

Corresponding author address: Mingjun Zhang, College of Geography and Environmental Science, Northwest Normal University, No. 27, Qiujiawan, Anning District, Lanzhou, Gansu 730070, China. E-mail: mjzhang2004@163.com
Save
  • Aemisegger, F., Sturm P. , Graf P. , Sodemann H. , Pfahl S. , Knohl A. , and Wernli H. , 2012: Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: An instrument characterisation study. Atmos. Meas. Tech., 5, 14911511, doi:10.5194/amt-5-1491-2012.

    • Search Google Scholar
    • Export Citation
  • Aemisegger, F., Pfahl S. , Sodemann H. , Lehner I. , Seneviratne S. I. , and Wernli H. , 2014: Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos. Chem. Phys., 14, 40294054, doi:10.5194/acp-14-4029-2014.

    • Search Google Scholar
    • Export Citation
  • Aemisegger, F., Spiegel J. , Pfahl S. , Sodemann H. , Eugster W. , and Wernli H. , 2015: Isotope meteorology of cold front passages: A case study combining observations and modeling. Geophys. Res. Lett., 42, 56525660, doi:10.1002/2015GL063988.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1968: An empirical shortcut to the calculation of temperature and pressure at the lifted condensation level. J. Appl. Meteor., 7, 511, doi:10.1175/1520-0450(1968)007<0511:AESTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benetti, M., Reverdin G. , Pierre C. , Merlivat L. , Risi C. , Steen-Larsen H. C. , and Vimeux F. , 2014: Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. J. Geophys. Res. Atmos., 119, 584593, doi:10.1002/2013JD020535.

    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1950a: Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Quart. J. Roy. Meteor. Soc., 76, 302311, doi:10.1002/qj.49707632905.

    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1950b: The size distribution of raindrops. Quart. J. Roy. Meteor. Soc., 76, 1636, doi:10.1002/qj.49707632704.

  • Cappa, C. D., Hendricks M. B. , DePaolo D. J. , and Cohen R. C. , 2003: Isotopic fractionation of water during evaporation. J. Geophys. Res., 108, 4525, doi:10.1029/2003JD003597.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Zhang M. , Wang S. , Ma Q. , Zhu X. , and Dong L. , 2015: Relationship between sub-cloud secondary evaporation and stable isotope in precipitation of Lanzhou and surrounding area. Quat. Int., 380–381, 6874, doi:10.1016/j.quaint.2014.12.051.

    • Search Google Scholar
    • Export Citation
  • Chen, X., 2012: Retrieval and Analysis of Evapotranspiration in Central Areas of Asia (in Chinese). China Meteorological Press, 214 pp.

  • Criss, R. E., 1999: Principles of Stable Isotope Distribution. Oxford University, 264 pp.

  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, doi:10.1111/j.2153-3490.1964.tb00181.x.

  • Fletcher, J. K., and Bretherton C. S. , 2010: Evaluating boundary layer-based mass flux closures using cloud-resolving model simulations of deep convection. J. Atmos. Sci., 67, 22122225, doi:10.1175/2010JAS3328.1.

    • Search Google Scholar
    • Export Citation
  • Friedman, I., and O’Neil J. R. , 1977: Compilation of stable isotope fractionation factors of geochemical interest. Data of Geochemistry, 6th ed. M. Fleischer, Ed., Geological Survey Professional Paper 440-KK, USGS, 117 pp.

  • Froehlich, K., Kralik M. , Papesch W. , Rank D. , Scheifinger H. , and Stichler W. , 2008: Deuterium excess in precipitation of Alpine regions—Moisture recycling. Isotopes Environ. Health Stud., 44, 6170, doi:10.1080/10256010801887208.

    • Search Google Scholar
    • Export Citation
  • Huang, W., Chen J. , Zhang X. , Feng S. , and Chen F. , 2015: Definition of the core zone of the “westerlies-dominated climatic regime,” and its controlling factors during the instrumental period. Sci. China Earth Sci., 58, 676684, doi:10.1007/s11430-015-5057-y.

    • Search Google Scholar
    • Export Citation
  • Kinzer, G. D., and Gunn R. , 1951: The evaporation, temperature and thermal relaxation-time of freely falling waterdrops. J. Meteor., 8, 7183, doi:10.1175/1520-0469(1951)008<0071:TETATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kong, Y., Pang Z. , and Froehlich K. , 2013: Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus, 65B, 19251, doi:10.3402/tellusb.v65i0.19251.

    • Search Google Scholar
    • Export Citation
  • Lee, J. E., and Fung I. , 2008: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Processes, 22, 18, doi:10.1002/hyp.6637.

    • Search Google Scholar
    • Export Citation
  • Lewis, S. C., LeGrande A. N. , Kelley M. , and Schmidt G. A. , 2013: Modeling insights into deuterium excess as an indicator of water vapor source conditions. J. Geophys. Res. Atmos., 118, 243262, doi:10.1029/2012JD017804.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Du B. , and Zhou X. , 2003: Features of raindrop size distributions in Tianshan area (in Chinese with English abstract). J. Nanjing Inst. Meteor., 26, 465472.

    • Search Google Scholar
    • Export Citation
  • Ma, Q., Zhang M. , Wang S. , Wang Q. , Liu W. , Li F. , and Chen F. , 2014: An investigation of moisture sources and secondary evaporation in Lanzhou, Northwest China. Environ. Earth Sci., 71, 33753385, doi:10.1007/s12665-013-2728-x.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., and Ramanadham R. , 1954: Modification of the size distribution of falling raindrops by coalescence. Quart. J. Roy. Meteor. Soc., 80, 388394, doi:10.1002/qj.49708034508.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2005: GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science, 309, 118121, doi:10.1126/science.1108575.

    • Search Google Scholar
    • Export Citation
  • Merlivat, L., 1970: Quantitative aspects of the study of water balances in lakes using the deuterium and oxygen-18 concentrations in the water. Proc. Isotope Hydrology 1970 Symp., Vienna, Austria, IAEA, 89107. [Available online at https://inis.iaea.org/search/search.aspx?orig_q=RN:38054521.]

  • Pang, Z., Kong Y. , Froehlich K. , Huang T. , Yuan L. , Li Z. , and Wang F. , 2011: Processes affecting isotopes in precipitation of an arid region. Tellus, 63B, 352359, doi:10.1111/j.1600-0889.2011.00532.x.

    • Search Google Scholar
    • Export Citation
  • Peng, H., Mayer B. , Harris S. , and Krouse H. , 2007: The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus, 59B, 698704, doi:10.1111/j.1600-0889.2007.00291.x.

    • Search Google Scholar
    • Export Citation
  • Peng, T.-R., Wang C.-H. , Huang C.-C. , Fei L.-Y. , Chen C.-T. A. , and Hwong J.-L. , 2010: Stable isotopic characteristic of Taiwan’s precipitation: A case study of western Pacific monsoon region. Earth Planet. Sci. Lett., 289, 357366, doi:10.1016/j.epsl.2009.11.024.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and Sodemann H. , 2014: What controls deuterium excess in global precipitation? Climate Past, 10, 771781, doi:10.5194/cp-10-771-2014.

    • Search Google Scholar
    • Export Citation
  • Risi, C., Bony S. , Vimeux F. , Chong M. , and Descroix L. , 2010: Evolution of the stable water isotopic composition of the rain sampled along Sahelian squall lines. Quart. J. Roy. Meteor. Soc., 136, 227242, doi:10.1002/qj.485.

    • Search Google Scholar
    • Export Citation
  • Salamalikis, V., Argiriou A. A. , and Dotsika E. , 2016: Isotopic modeling of the sub-cloud evaporation effect in precipitation. Sci. Total Environ., 544, 10591072, doi:10.1016/j.scitotenv.2015.11.072.

    • Search Google Scholar
    • Export Citation
  • Shi, Y., Sun Z. , and Yang Q. , 2008: Characteristics of area precipitation in Xinjiang region with its variations (in Chinese with English abstract). J. Appl. Meteor. Sci., 19, 326332.

    • Search Google Scholar
    • Export Citation
  • Steen-Larsen, H. C., and Coauthors, 2014: Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements. Atmos. Chem. Phys., 14, 77417756, doi:10.5194/acp-14-7741-2014.

    • Search Google Scholar
    • Export Citation
  • Stewart, M. K., 1975: Stable isotope fractionation due to evaporation and isotopic exchange of falling water drops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res., 80, 11331146, doi:10.1029/JC080i009p01133.

    • Search Google Scholar
    • Export Citation
  • Sun, X., 2004: Precipitation Intensity Distribution and Rainfall Attenuation in Ku Band in Major Cities in China (in Chinese). China Meteorological Press, 192 pp.

  • Tian, L., Yao T. , MacClune K. , White J. W. C. , Schilla A. , Vaughn B. , Vachon R. , and Ichiyanagi K. , 2007: Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res., 112, D10112, doi:10.1029/2006JD007718.

    • Search Google Scholar
    • Export Citation
  • von Herrmann, C. F., 1906: Problems in meteorology. Mon. Wea. Rev., 34, 574579, doi:10.1175/1520-0493(1906)34<574:PIM>2.0.CO;2.

  • Wang, J., and Coauthors, 2009: Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA, 106, 36703674, doi:10.1073/pnas.0810156106.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Zhang M. , Sun M. , Wang B. , and Li X. , 2013: Changes in precipitation extremes in alpine areas of the Chinese Tianshan Mountains, central Asia, 1961–2011. Quat. Int., 311, 97107, doi:10.1016/j.quaint.2013.07.008.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Zhang M. , Hughes C. E. , Zhu X. , Dong L. , Ren Z. , and Chen F. , 2016: Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, central Asia. Tellus., 68B, 26206, doi:10.3402/tellusb.v68.26206.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Wang J. , Qi Y. , and Yan C. , 2005: Dataset of desert distribution in China (1:100,000). Environmental and Ecological Science Data Center for West China, National Natural Science Foundation of China, accessed 1 June 2014, doi:10.3972/westdc.006.2013.db.

  • Yang, Y.-M., Kang I.-S. , and Almazroui M. , 2014: A mass flux closure function in a GCM based on the Richardson number. Climate Dyn., 42, 11291138, doi:10.1007/s00382-014-2079-7.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., Kanamitsu M. , Noone D. , and Oki T. , 2008: Historical isotope simulation using reanalysis atmospheric data. J. Geophys. Res., 113, D19108, doi:10.1029/2008JD010074.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., Kanamitsu M. , and Dettinger M. , 2010: Regional downscaling for stable water isotopes: A case study of an atmospheric river event. J. Geophys. Res., 115, D18114, doi:10.1029/2010JD014032.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Xie Z. , and Yao T. , 1998: Mathematical modeling of variations on stable isotopic ratios in falling raindrops. Acta Meteorol. Sin., 12, 213220.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., Zhang M. , Wang S. , Qiang F. , Zeng T. , Ren Z. , and Dong L. , 2015: Comparison of monthly precipitation derived from high-resolution gridded datasets in arid Xinjiang, central Asia. Quat. Int., 358, 160170, doi:10.1016/j.quaint.2014.12.027.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2319 775 77
PDF Downloads 1771 232 32