Small-Scale Variability of the Raindrop Size Distribution and Its Effect on Areal Rainfall Retrieval

Timothy H. Raupach Environmental Remote Sensing Laboratory, School of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Timothy H. Raupach in
Current site
Google Scholar
PubMed
Close
and
Alexis Berne Environmental Remote Sensing Laboratory, School of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Alexis Berne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The drop size distribution (DSD) describes the microstructure of liquid precipitation. The high variability of the DSD reflects the variety of microphysical processes controlling raindrop properties and affects the retrieval of rainfall. An analysis of the effects of DSD subgrid variability on areal estimation of precipitation is presented. Data used were recorded with a network of disdrometers in Ardèche, France. DSD variability was studied over two typical scales: 5 km × 5 km, similar to the ground footprint size of the Global Precipitation Measurement (GPM) spaceborne weather radar, and 2.8 km × 2.8 km, an operational pixel size of the Consortium for Small-Scale Modeling (COSMO) numerical weather model. Stochastic simulation was used to generate high-resolution grids of DSD estimates over the regions of interest, constrained by experimental DSDs measured by disdrometers. From these grids, areal DSD estimates were derived. The error introduced by assuming a point measurement to be representative of the areal DSD was quantitatively characterized and was shown to increase with the size of the considered area and with drop size and to decrease with the integration time. The controlled framework allowed for the accuracy of retrieval algorithms to be investigated. Rainfall variables derived by idealized simulations of GPM- and COSMO-style algorithms were compared to subgrid distributions of the same variables. While rain rate and radar reflectivity were well represented, the estimated drop concentration and mass-weighted mean drop diameter were often less representative of subgrid values.

Corresponding author address: Alexis Berne, Environmental Remote Sensing Laboratory, School of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland. E-mail: alexis.berne@epfl.ch

Abstract

The drop size distribution (DSD) describes the microstructure of liquid precipitation. The high variability of the DSD reflects the variety of microphysical processes controlling raindrop properties and affects the retrieval of rainfall. An analysis of the effects of DSD subgrid variability on areal estimation of precipitation is presented. Data used were recorded with a network of disdrometers in Ardèche, France. DSD variability was studied over two typical scales: 5 km × 5 km, similar to the ground footprint size of the Global Precipitation Measurement (GPM) spaceborne weather radar, and 2.8 km × 2.8 km, an operational pixel size of the Consortium for Small-Scale Modeling (COSMO) numerical weather model. Stochastic simulation was used to generate high-resolution grids of DSD estimates over the regions of interest, constrained by experimental DSDs measured by disdrometers. From these grids, areal DSD estimates were derived. The error introduced by assuming a point measurement to be representative of the areal DSD was quantitatively characterized and was shown to increase with the size of the considered area and with drop size and to decrease with the integration time. The controlled framework allowed for the accuracy of retrieval algorithms to be investigated. Rainfall variables derived by idealized simulations of GPM- and COSMO-style algorithms were compared to subgrid distributions of the same variables. While rain rate and radar reflectivity were well represented, the estimated drop concentration and mass-weighted mean drop diameter were often less representative of subgrid values.

Corresponding author address: Alexis Berne, Environmental Remote Sensing Laboratory, School of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland. E-mail: alexis.berne@epfl.ch
Save
  • Andsager, K., Beard K. V. , and Laird N. F. , 1999: Laboratory measurements of axis ratios for large rain drops. J. Atmos. Sci., 56, 26732683, doi:10.1175/1520-0469(1999)056<2673:LMOARF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., Srivastava R. , and Sekhon R. S. , 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., Seifert A. , Förstner J. , Majewski D. , Raschendorfer M. , and Reinhardt T. , 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, doi:10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and Chuang C. , 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, doi:10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E., Zhang G. , and Vivekanandan J. , 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, doi:10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 662 pp.

  • Chapon, B., Delrieu G. , Gosset M. , and Boudevillain B. , 2008: Variability of rain drop size distribution and its effect on the ZR relationship: A case study for intense Mediterranean rainfall. Atmos. Res., 87, 5265, doi:10.1016/j.atmosres.2007.07.003.

    • Search Google Scholar
    • Export Citation
  • Cressie, N. A. C., 1993: Statistics for Spatial Data. Wiley, 900 pp.

  • Delrieu, G., and Coauthors, 2005: The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: A first case study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeor., 6, 3452, doi:10.1175/JHM-400.1.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model, part II: Physical parameterization. Consortium for Small-Scale Modelling, 161 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.]

  • Drobinski, P., and Coauthors, 2014: HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Amer. Meteor. Soc., 95, 10631082, doi:10.1175/BAMS-D-12-00242.1.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and Schär C. , 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Jaffrain, J., and Berne A. , 2012a: Influence of the subgrid variability of the raindrop size distribution on radar rainfall estimators. J. Appl. Meteor. Climatol., 51, 780785, doi:10.1175/JAMC-D-11-0185.1.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and Berne A. , 2012b: Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers. J. Appl. Meteor. Climatol., 51, 941953, doi:10.1175/JAMC-D-11-0136.1.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., Studzinski A. , and Berne A. , 2011: A network of disdrometers to quantify the small-scale variability of the raindrop size distribution. Water Resour. Res., 47, W00H06, doi:10.1029/2010WR009872.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 2015: A Bayesian method for upsizing single disdrometer drop size counts for rain physics studies and areal applications. IEEE Trans. Geosci. Remote Sens., 53, 335343, doi:10.1109/TGRS.2014.2322092.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and Kostinski A. B. , 2001: What is a raindrop size distribution? Bull. Amer. Meteor. Soc., 82, 11691177, doi:10.1175/1520-0477(2001)082<1169:WIARSD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., Larsen M. , and Kostinski A. , 2015a: Disdrometer network observations of finescale spatial–temporal clustering in rain. J. Atmos. Sci., 72, 16481666, doi:10.1175/JAS-D-14-0136.1.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., Larsen M. , and Kostinski A. , 2015b: On the variability of drop size distributions over areas. J. Atmos. Sci., 72, 13861397, doi:10.1175/JAS-D-14-0258.1.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A., Reuter H. , Nelson A. , and Guevara E. , 2008: Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT), accessed 23 March 2016. [Available online at http://srtm.csi.cgiar.org.]

  • Johnson, R. W., Kliche D. V. , and Smith P. L. , 2014: Maximum likelihood estimation of gamma parameters for coarsely binned and truncated raindrop size data. Quart. J. Roy. Meteor. Soc., 140, 12451256, doi:10.1002/qj.2209.

    • Search Google Scholar
    • Export Citation
  • Lee, C. K., Lee G. W. , Zawadzki I. , and Kim K.-E. , 2009: A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. J. Appl. Meteor. Climatol., 48, 270283, doi:10.1175/2008JAMC1877.1.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and Zawadzki I. , 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44, 241255, doi:10.1175/JAM2183.1.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., Seed A. W. , and Zawadzki I. , 2007: Modeling the variability of drop size distributions in space and time. J. Appl. Meteor. Climatol., 46, 742756, doi:10.1175/JAM2505.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., Meneghini R. , and Tokay A. , 2014: Uncertainties of GPM DPR rain estimates caused by DSD parameterizations. J. Appl. Meteor. Climatol., 53, 25242537, doi:10.1175/JAMC-D-14-0003.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., Chiao S. , Wang T. A. , Kaplan M. L. , and Weglarz R. , 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, doi:10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and Joss J. , 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miniscloux, F., Creutin J.-D. , and Anquetin S. , 2001: Geostatistical analysis of orographic rain bands. J. Appl. Meteor., 40, 18351854, doi:10.1175/1520-0450(2001)040<1835:GAOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miriovsky, B., and Coauthors, 2004: An experimental study of small-scale variability of radar reflectivity using disdrometer observations. J. Appl. Meteor., 43, 106118, doi:10.1175/1520-0450(2004)043<0106:AESOSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and Travis L. D. , 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309324, doi:10.1016/S0022-4073(98)00008-9.

    • Search Google Scholar
    • Export Citation
  • Nuissier, O., Joly B. , Joly A. , Ducrocq V. , and Arbogast P. , 2011: A statistical downscaling to identify the large-scale circulation patterns associated with heavy precipitation events over southern France. Quart. J. Roy. Meteor. Soc., 137, 18121827, doi:10.1002/qj.866.

    • Search Google Scholar
    • Export Citation
  • Pebesma, E. J., 2004: Multivariate geostatistics in S: The gstat package. Comput. Geosci., 30, 683691, doi:10.1016/j.cageo.2004.03.012.

    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., and Berne A. , 2015: Correction of raindrop size distributions measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a reference. Atmos. Meas. Tech., 8, 343365, doi:10.5194/amt-8-343-2015; Corrigendum, 8, 343365, doi:10.5194/amt-8-343-2015-corrigendum.

    • Search Google Scholar
    • Export Citation
  • Raupach, T. H., and Berne A. , 2016: Spatial interpolation of experimental raindrop size distribution spectra. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2801, in press.

    • Search Google Scholar
    • Export Citation
  • Ricard, D., Ducrocq V. , and Auger L. , 2012: A climatology of the mesoscale environment associated with heavily precipitating events over a northwestern Mediterranean area. J. Appl. Meteor. Climatol., 51, 468488, doi:10.1175/JAMC-D-11-017.1.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Sassi, M., Leijnse H. , and Uijlenhoet R. , 2014: Sensitivity of power functions to aggregation: Bias and uncertainty in radar rainfall retrieval. Water Resour. Res., 50, 80508065, doi:10.1002/2013WR015109.

    • Search Google Scholar
    • Export Citation
  • Schleiss, M., Jaffrain J. , and Berne A. , 2012: Stochastic simulation of intermittent DSD fields in time. J. Hydrometeor., 13, 621637, doi:10.1175/JHM-D-11-018.1.

    • Search Google Scholar
    • Export Citation
  • Schleiss, M., Chamoun S. , and Berne A. , 2014a: Nonstationarity in intermittent rainfall: The dry drift. J. Hydrometeor., 15, 11891204, doi:10.1175/JHM-D-13-095.1.

    • Search Google Scholar
    • Export Citation
  • Schleiss, M., Chamoun S. , and Berne A. , 2014b: Stochastic simulation of intermittent rainfall using the concept of dry drift. Water Resour. Res., 50, 23292349, doi:10.1002/2013WR014641.

    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., Dawes N. , Lehning M. , and Berne A. , 2013: High-resolution vertical profiles of polarimetric X-band weather radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, doi:10.1175/JAMC-D-12-015.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., Blahak U. , Stephan K. , Baldauf M. , and Schulz J.-P. , 2011: Documentation of the changes in the COSMO-model, version 4.21. Consortium for Small-Scale Modelling, accessed 8 April 2015. [Available online at http://www.cosmo-model.org/content/model/releases/histories/cosmo_4.21.htm.]

  • Seto, S., Iguchi T. , and Oki T. , 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, doi:10.1109/TGRS.2012.2231686.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F., Checa R. , and De Castro M. , 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, L16803, doi:10.1029/2010GL044120.

    • Search Google Scholar
    • Export Citation
  • Testud, J., Oury S. , Black R. A. , Amayenc P. , and Dou X. , 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., Huang G. , Bringi V. , Randeu W. , and Schönhuber M. , 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, doi:10.1175/JTECH2051.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and Bashor P. G. , 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, doi:10.1175/2010JAMC2269.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Wolff D. B. , and Petersen W. A. , 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, doi:10.1175/JTECH-D-13-00174.1.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., 2001: Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci., 5, 615628, doi:10.5194/hess-5-615-2001.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., Steiner M. , and Smith J. A. , 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4, 4361, doi:10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., Porra J. M. , Torres D. S. , and Creutin J.-D. , 2006: Analytical solutions to sampling effects in drop size distribution measurements during stationary rainfall: Estimation of bulk rainfall variables. J. Hydrol., 328, 6582, doi:10.1016/j.jhydrol.2005.11.043.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop-size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor., 24, 580590, doi:10.1175/1520-0450(1985)024<0580:TEODSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., Goudenhoofdt E. , Blahak U. , Brisson E. , Demuzere M. , Marbaix P. , and van Ypersele J.-P. , 2014: Comparison of one-moment and two-moment bulk microphysics for high-resolution climate simulations of intense precipitation. Atmos. Res., 147–148, 145161, doi:10.1016/j.atmosres.2014.05.012.

    • Search Google Scholar
    • Export Citation
  • Verrier, S., Barthès L. , and Mallet C. , 2013: Theoretical and empirical scale dependency of ZR relationships: Evidence, impacts, and correction. J. Geophys. Res. Atmos., 118, 74357449, doi:10.1002/jgrd.50557.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Zhang G. , and Brandes E. , 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor., 43, 217230, doi:10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and Hobbs P. V. , 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press, 504 pp.

  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661, doi:10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 722 343 41
PDF Downloads 323 63 13