WRF with Water Vapor Tracers: A Study of Moisture Sources for the North American Monsoon

Francina Dominguez Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Francina Dominguez in
Current site
Google Scholar
PubMed
Close
,
Gonzalo Miguez-Macho Non-Linear Physics Group, Faculty of Physics, Universidade de Santiago de Compostela, Galicia, Spain

Search for other papers by Gonzalo Miguez-Macho in
Current site
Google Scholar
PubMed
Close
, and
Huancui Hu Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Huancui Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The regional atmospheric Weather Research and Forecasting (WRF) Model with water vapor tracer diagnostics (WRF-WVT) is used to quantify the water vapor from different oceanic and terrestrial regions that contribute to precipitation during the North American monsoon (NAM) season. The 10-yr (2004–13) June–October simulations with 20-km horizontal resolution were driven by North American Regional Reanalysis data. Results show that lower-level moisture comes predominantly from the Gulf of California and is the most important source of precipitation. Upper-level (above 800 mb) southeasterly moisture originates from the Gulf of Mexico and Sierra Madre Occidental to the east. Moisture from within the NAM region (local recycling) is the second-most important precipitation source, as the local atmospheric moisture is very efficiently converted into precipitation. However, WRF-WVT overestimates precipitation and evapotranspiration in the NAM region, particularly over the mountainous terrain. Direct comparisons with moisture source analysis using the extended dynamic recycling model (DRM) reveal that the simple model fails to correctly backtrack moisture in this region of strong vertical wind shear. Furthermore, the assumption of a well-mixed atmosphere causes the simple model to significantly underestimate local recycling. However, the direct comparison with WRF-WVT can be used to guide future DRM improvements.

Corresponding author address: Francina Dominguez, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: francina@illinois.edu

Abstract

The regional atmospheric Weather Research and Forecasting (WRF) Model with water vapor tracer diagnostics (WRF-WVT) is used to quantify the water vapor from different oceanic and terrestrial regions that contribute to precipitation during the North American monsoon (NAM) season. The 10-yr (2004–13) June–October simulations with 20-km horizontal resolution were driven by North American Regional Reanalysis data. Results show that lower-level moisture comes predominantly from the Gulf of California and is the most important source of precipitation. Upper-level (above 800 mb) southeasterly moisture originates from the Gulf of Mexico and Sierra Madre Occidental to the east. Moisture from within the NAM region (local recycling) is the second-most important precipitation source, as the local atmospheric moisture is very efficiently converted into precipitation. However, WRF-WVT overestimates precipitation and evapotranspiration in the NAM region, particularly over the mountainous terrain. Direct comparisons with moisture source analysis using the extended dynamic recycling model (DRM) reveal that the simple model fails to correctly backtrack moisture in this region of strong vertical wind shear. Furthermore, the assumption of a well-mixed atmosphere causes the simple model to significantly underestimate local recycling. However, the direct comparison with WRF-WVT can be used to guide future DRM improvements.

Corresponding author address: Francina Dominguez, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: francina@illinois.edu
Save
  • Adams, D., and Comrie A. , 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., Roads J. O. , and Chen S.-C. , 2000: Large-scale forcing of summertime monsoon surges over the Gulf of California and the southwestern United States. J. Geophys. Res., 105, 24 45524 467, doi:10.1029/2000JD900337.

    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., and Vivoni E. R. , 2016: Process-based characterization of evapotranspiration sources over the North American monsoon region. Water Resour. Res., 52, 358384, doi:10.1002/2015WR017934.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2002: On the vertical distribution of local and remote sources of water for precipitation. Meteor. Atmos. Phys., 80, 3141, doi:10.1007/s007030200012.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Sud Y. , Schubert S. , and Walker G. , 2003: Numerical simulation of the large-scale North American monsoon water sources. J. Geophys. Res., 108, 8614, doi:10.1029/2002JD003095.

    • Search Google Scholar
    • Export Citation
  • Brenner, I. S., 1974: A surge of maritime tropical air—Gulf of California to the southwestern United States. Mon. Wea. Rev., 102, 375389, doi:10.1175/1520-0493(1974)102<0375:ASOMTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., Kumar P. , Liang X. , and Ting M. , 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530, doi:10.1175/JCLI3691.1.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., Kumar P. , and Vivoni E. R. , 2008: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part II: North American monsoon region. J. Climate, 21, 51875203, doi:10.1175/2008JCLI1760.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., and Leal J. C. , 2003: Summertime surges over the Gulf of California: Aspects of their climatology, mean structure, and evolution from radiosonde, NCEP reanalysis, and rainfall data. Wea. Forecasting, 18, 5574, doi:10.1175/1520-0434(2003)018<0055:SSOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., Maddox R. A. , Howard K. , and Reyes S. , 1993: The Mexican monsoon. J. Climate, 6, 16651677, doi:10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., Bastin S. , and Janicot S. , 2011: Regional climate modelling of the 2006 West African monsoon: Sensitivity to convection and planetary boundary layer parameterisation using WRF. Climate Dyn., 36, 10831105, doi:10.1007/s00382-010-0785-3.

    • Search Google Scholar
    • Export Citation
  • Fuller, R. D., and Stensrud D. J. , 2000: The relationship between tropical easterly waves and surges over the Gulf of California during the North American monsoon. Mon. Wea. Rev., 128, 29832989, doi:10.1175/1520-0493(2000)128<2983:TRBTEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, doi:10.1029/2012RG000389.

    • Search Google Scholar
    • Export Citation
  • Goessling, H. F., and Reick C. H. , 2013: On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture. Atmos. Chem. Phys., 13, 55675585, doi:10.5194/acp-13-5567-2013.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and Shi W. , 2005: Relationships between Gulf of California moisture surges and tropical cyclones in the eastern Pacific basin. J. Climate, 18, 46014620, doi:10.1175/JCLI3551.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Yao Y. , and Wang X. , 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, doi:10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Shi W. , and Hain C. , 2004: Relationships between Gulf of California moisture surges and precipitation in the southwestern United States. J. Climate, 17, 29832997, doi:10.1175/1520-0442(2004)017<2983:RBGOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Pan H.-L. , 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Lim O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hu, H., and Dominguez F. , 2015: Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes. J. Hydrometeor., 16, 1935, doi:10.1175/JHM-D-14-0073.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., Lau N.-C. , and Klein S. A. , 2006: Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great Plains. Geophys. Res. Lett., 33, L19809, doi:10.1029/2006GL027022.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., Ciesielski P. E. , McNoldy B. D. , Rogers P. J. , and Taft R. K. , 2007: Multiscale variability of the flow during the North American monsoon experiment. J. Climate, 20, 16281648, doi:10.1175/JCLI4087.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knoche, H. R., and Kunstmann H. , 2013: Tracking atmospheric water pathways by direct evaporation tagging: A case study for West Africa. J. Geophys. Res. Atmos., 118, 12 34512 358, doi:10.1002/2013JD019976.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20, 18621881, doi:10.1175/JCLI4090.1.

    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and Dominguez F. , 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 67376753, doi:10.1175/JCLI-D-14-00022.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Rios-Entraza A. , and Dominguez F. , 2013: The impact of soil moisture and evapotranspiration fluxes on the spring water cycle in the Iberian Peninsula: A study with moisture tracers in WRF. 2013 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H12B–05.

  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Gochis D. J. , and Lang T. J. , 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743, doi:10.1175/2008JHM939.1.

    • Search Google Scholar
    • Export Citation
  • Schmitz, J., and Mullen S. , 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9, 16211634, doi:10.1175/1520-0442(1996)009<1621:WVTAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., Wernli H. , and Schwierz C. , 2009: Sources of water vapour contributing to the Elbe flood in August 2002—A tagging study in a mesoscale model. Quart. J. Roy. Meteor. Soc., 135, 205223, doi:10.1002/qj.374.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Gall R. L. , and Nordquist M. K. , 1997: Surges over the Gulf of California during the Mexican monsoon. Mon. Wea. Rev., 125, 417437, doi:10.1175/1520-0493(1997)125<0417:SOTGOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., Vivoni E. R. , Munoz-Arriola F. , and Lettenmaier D. P. , 2012: Predictability of evapotranspiration patterns using remotely sensed vegetation dynamics during the North American monsoon. J. Hydrometeor., 13, 103121, doi:10.1175/JHM-D-11-032.1.

    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Dominguez F. , 2013: Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J. Geophys. Res. Atmos., 118, 75917605, doi:10.1002/jgrd.50590.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 12321251, doi:10.1175/JAMC-D-13-0248.1.

    • Search Google Scholar
    • Export Citation
  • Watts, C. J., Scott R. L. , Garatuza-Payan J. , Rodriguez J. C. , Prueger J. H. , Kustas W. P. , and Douglas M. , 2007: Changes in vegetation condition and surface fluxes during NAME 2004. J. Climate, 20, 18101820, doi:10.1175/JCLI4088.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2792 1066 92
PDF Downloads 2048 413 26