Coupled Evaluation of Below- and Aboveground Energy and Water Cycle Variables from Reanalysis Products over Five Flux Tower Sites in the United States

William Lytle Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by William Lytle in
Current site
Google Scholar
PubMed
Close
and
Xubin Zeng Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reanalysis products are widely used to study the land–atmosphere exchanges of energy, water, and carbon fluxes and have been evaluated using in situ data above or below ground. Here, measurements for several years at five flux tower sites in the United States (with a total of 315 576 h of data) are used for the coupled evaluation of both below- and aboveground processes from three global reanalysis products and six global land data assimilation products. All products show systematic errors in precipitation, snow depth, and the timing of the melting and onset of snow. Despite the biases in soil moisture, all products show significant correlations with observed daily soil moisture for the periods with unfrozen soil. While errors in 2-m air temperature are highly correlated with errors in skin temperature for all sites, the correlations between skin and soil temperature errors are weaker, particularly over the sites with seasonal snow. While net short- and longwave radiation flux errors have opposite signs across all products, the net radiation and ground heat flux errors are usually smaller in magnitude than turbulent flux errors. On the other hand, the all-product averages usually agree well with the observations on the evaporative fraction, defined as the ratio of latent heat over the sum of latent and sensible heat fluxes. This study identifies the strengths and weaknesses of these widely used products and helps understand the connection of their errors in above- versus belowground quantities.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0224.s1.

Corresponding author address: William Lytle, Department of Hydrology and Atmospheric Sciences, The University of Arizona, 1118 E. 4th St., Tucson, AZ 85721. E-mail: welytle@email.arizona.edu

Abstract

Reanalysis products are widely used to study the land–atmosphere exchanges of energy, water, and carbon fluxes and have been evaluated using in situ data above or below ground. Here, measurements for several years at five flux tower sites in the United States (with a total of 315 576 h of data) are used for the coupled evaluation of both below- and aboveground processes from three global reanalysis products and six global land data assimilation products. All products show systematic errors in precipitation, snow depth, and the timing of the melting and onset of snow. Despite the biases in soil moisture, all products show significant correlations with observed daily soil moisture for the periods with unfrozen soil. While errors in 2-m air temperature are highly correlated with errors in skin temperature for all sites, the correlations between skin and soil temperature errors are weaker, particularly over the sites with seasonal snow. While net short- and longwave radiation flux errors have opposite signs across all products, the net radiation and ground heat flux errors are usually smaller in magnitude than turbulent flux errors. On the other hand, the all-product averages usually agree well with the observations on the evaporative fraction, defined as the ratio of latent heat over the sum of latent and sensible heat fluxes. This study identifies the strengths and weaknesses of these widely used products and helps understand the connection of their errors in above- versus belowground quantities.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0224.s1.

Corresponding author address: William Lytle, Department of Hydrology and Atmospheric Sciences, The University of Arizona, 1118 E. 4th St., Tucson, AZ 85721. E-mail: welytle@email.arizona.edu

Supplementary Materials

    • Supplemental Materials (DOCX 3.52 MB)
Save
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Beljaars A. , Scipal K. , Viterbo P. , van den Hurk B. , Hirschi M. , and Betts A. K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Pappenberger F. , Dutra E. , Viterbo P. , and van den Hurk B. , 2010: A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully-closed water cycle. Hydrol. Processes, 25, 10461054, doi:10.1002/hyp.7808.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Boussetta S. , Dutra E. , Beljaars A. , Viterbo P. , and Van den Hurk B. , 2011: Evolution of land surface processes in the IFS. ECMWF Newsletter, No. 127, ECMWF, Reading, United Kingdom, 17–22.

  • Balsamo, G., and Coauthors, 2013: ERA-Interim/Land: A global land water resources dataset. Hydrol. Earth Syst. Sci., 19, 389407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., Stefan H. , and Kevin H. I. , 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, 19842012, doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Desjardins R. , Worth D. , Wang S. , and Li J. , 2014: Coupling of winter climate transitions to snow and clouds over the Prairies. J. Geophys. Res. Atmos., 119, 11181139, doi:10.1002/2013JD021168.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Mocko D. , Roads J. O. , and Ruane A. , 2009: A multimodel analysis for the Coordinated Enhanced Observing Period (CEOP). J. Hydrometeor., 10, 912934, doi:10.1175/2009JHM1090.1.

    • Search Google Scholar
    • Export Citation
  • Boussetta, S., Balsamo G. , Beljaars A. , Kral T. , and Jarlan L. , 2013: Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model. Int. J. Remote Sens., 34, 35203542, doi:10.1080/01431161.2012.716543.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and Brasnett B. , 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data, version 1. National Snow and Ice Data Center, accessed March 2014, doi:10.5067/W9FOYWH0EQZ3.

  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131023, doi:10.1175/BAMS-84-8-1013.

  • Decker, M., Brunke M. A. , Wang Z. , Sakaguchi K. , Zeng X. , and Bosilovich M. G. , 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 19161944, doi:10.1175/JCLI-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Balsamo G. , Viterbo P. , Miranda P. M. A. , Beljaars A. , Schär C. , and Elder K. , 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916, doi:10.1175/2010JHM1249.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Foken, T., Aubinet M. , Finnigan J. J. , Leclerc M. Y. , Mauder M. , and Paw U K. T. , 2011: Results off a panel discussion about the energy balance closure correction for trace gases. Bull. Amer. Meteor. Soc., 92, ES13ES18, doi:10.1175/2011BAMS3130.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.]

  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Lauri, H., Räsänen T. A. , and Kummu M. , 2014: Using reanalysis and remotely sensed temperature and precipitation data for hydrological modelling in monsoon climate: Case Mekong River. J. Hydrometeor., 15, 15321545, doi:10.1175/JHM-D-13-084.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101, 21 40321 422, doi:10.1029/96JD01448.

    • Search Google Scholar
    • Export Citation
  • Mao, J., and Coauthors, 2010: Assessment of reanalysis daily extreme temperatures with China’s homogenized historical dataset during 1979–2001 using probability density functions. J. Climate, 23, 66056623, doi:10.1175/2010JCLI3581.1.

    • Search Google Scholar
    • Export Citation
  • National Weather Service, 1989: National Weather Service observing handbook 2: Cooperative station observations. Office of Systems Operations, Observing Systems Branch Rep., 94 pp. [Available online at http://weather.gov/om/coop/Publications/coophandbook2.pdf.]

  • Nigam, S., and Ruiz-Barradas A. , 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19, 815837, doi:10.1175/JCLI3635.1.

    • Search Google Scholar
    • Export Citation
  • Qian, T., Dai A. , Trenberth K. E. , and Oleson K. W. , 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. J. Hydrometeor., 7, 953975, doi:10.1175/JHM540.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , De Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Touré A. , 2011: Assessment of enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., Uppala S. , Dee D. , and Kobayashi S. , 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279300, doi:10.1016/S0168-1923(00)00123-4.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and Zeng X. , 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, doi:10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. B., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243, doi:10.1016/S0168-1923(02)00109-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1129 709 49
PDF Downloads 169 24 5