Modeling Rainfall Interception Loss for an Epiphyte-Laden Quercus virginiana Forest Using Reformulated Static- and Variable-Storage Gash Analytical Models

John T. Van Stan II Department of Geology and Geography, Georgia Southern University, Statesboro, Georgia

Search for other papers by John T. Van Stan II in
Current site
Google Scholar
PubMed
Close
,
Ethan D. Gutmann Research Applications Laboratory, National Center for Atmospheric Research, aBoulder, Colorado

Search for other papers by Ethan D. Gutmann in
Current site
Google Scholar
PubMed
Close
,
Elliott S. Lewis Department of Geology and Geography, Georgia Southern University, Statesboro, Georgia

Search for other papers by Elliott S. Lewis in
Current site
Google Scholar
PubMed
Close
, and
Trent E. Gay Department of Geology and Geography, Georgia Southern University, Statesboro, Georgia

Search for other papers by Trent E. Gay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Barrier island forests are sensitive to changing precipitation characteristics as they typically rely on a precipitation-fed freshwater lens. Understanding and predicting significant rainfall losses is, therefore, critical to the prediction and management of hydrometeorological processes in the barrier island forest ecosystem. This study measures and models one such loss, canopy rainfall interception, for a barrier island forest common across subtropical and tropical coastlines: epiphyte-laden Quercus virginiana on St. Catherine’s Island (Georgia, United States). Reformulated Gash analytical models (RGAMs) relying on static- and variable-canopy-storage formulations were parameterized using common maximum water storage (minimum, mean, maximum, and laboratory submersion) and evaporation (Penman–Monteith, saturated rain–throughfall regression, and rain–interception regression) estimation methods. Cumulative interception loss was 37% of rainfall, and the epiphyte community contribution to interception loss was 11%. Variable-storage RGAMs using inferred evaporation and maximum water storage estimates performed best: mean absolute error of 1–2 mm, normalized mean percent error of 15%–25%, and model efficiency of 0.88–0.97, resulting in a 2%–5% overestimate of cumulative interception. Static- and variable-storage RGAMs using physically derived evaporation (Penman–Monteith) underestimated observed interception loss (40%–60%), yet the error was significantly lowered for submersion estimates of maximum water storage. Greater apparent error when using Penman–Monteith rates may result from unknown drying times, evaporation sources, and/or in situ epiphyte storage dynamics. As such, it is suggested that future research apply existing technologies to quantify evaporative processes during rainfall (e.g., eddy covariance) and to develop new methods to directly monitor in situ epiphyte water storage.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: John T. Van Stan II, Department of Geology and Geography, Georgia Southern University, 68 Georgia Ave., Statesboro, GA 30460. E-mail: jvanstan@georgiasouthern.edu

Abstract

Barrier island forests are sensitive to changing precipitation characteristics as they typically rely on a precipitation-fed freshwater lens. Understanding and predicting significant rainfall losses is, therefore, critical to the prediction and management of hydrometeorological processes in the barrier island forest ecosystem. This study measures and models one such loss, canopy rainfall interception, for a barrier island forest common across subtropical and tropical coastlines: epiphyte-laden Quercus virginiana on St. Catherine’s Island (Georgia, United States). Reformulated Gash analytical models (RGAMs) relying on static- and variable-canopy-storage formulations were parameterized using common maximum water storage (minimum, mean, maximum, and laboratory submersion) and evaporation (Penman–Monteith, saturated rain–throughfall regression, and rain–interception regression) estimation methods. Cumulative interception loss was 37% of rainfall, and the epiphyte community contribution to interception loss was 11%. Variable-storage RGAMs using inferred evaporation and maximum water storage estimates performed best: mean absolute error of 1–2 mm, normalized mean percent error of 15%–25%, and model efficiency of 0.88–0.97, resulting in a 2%–5% overestimate of cumulative interception. Static- and variable-storage RGAMs using physically derived evaporation (Penman–Monteith) underestimated observed interception loss (40%–60%), yet the error was significantly lowered for submersion estimates of maximum water storage. Greater apparent error when using Penman–Monteith rates may result from unknown drying times, evaporation sources, and/or in situ epiphyte storage dynamics. As such, it is suggested that future research apply existing technologies to quantify evaporative processes during rainfall (e.g., eddy covariance) and to develop new methods to directly monitor in situ epiphyte water storage.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: John T. Van Stan II, Department of Geology and Geography, Georgia Southern University, 68 Georgia Ave., Statesboro, GA 30460. E-mail: jvanstan@georgiasouthern.edu
Save
  • Asdak, C., Jarvis P. G. , and Gardingen P. V. , 1998: Modelling rainfall interception in unlogged and logged forest areas of central Kalimantan, Indonesia. Hydrol. Earth Syst. Sci., 2, 211220, doi:10.5194/hess-2-211-1998.

    • Search Google Scholar
    • Export Citation
  • Aston, A., 1979: Rainfall interception by eight small trees. J. Hydrol., 42, 383396, doi:10.1016/0022-1694(79)90057-X.

  • Bittner, S., Talkner U. , Krämer I. , Beese F. , Hölscher D. , and Priesack E. , 2010: Modeling stand water budgets of mixed temperate broad-leaved forest stands by considering variations in species specific drought response. Agric. For. Meteor., 150, 13471357, doi:10.1016/j.agrformet.2010.06.006.

    • Search Google Scholar
    • Export Citation
  • Bouten, W., Swart P. J. F. , and de Water E. , 1991: Microwave transmission, a new tool in forest hydrological research. J. Hydrol., 124, 119130, doi:10.1016/0022-1694(91)90009-7.

    • Search Google Scholar
    • Export Citation
  • Bulcock, H. H., and Jewitt G. P. W. , 2012a: Field data collection and analysis of canopy and litter interception in commercial forest plantations in the KwaZulu-Natal midlands, South Africa. Hydrol. Earth Syst. Sci., 16, 37173728, doi:10.5194/hess-16-3717-2012.

    • Search Google Scholar
    • Export Citation
  • Bulcock, H. H., and Jewitt G. P. W. , 2012b: Modelling canopy and litter interception in commercial forest plantations in South Africa using the Variable Storage Gash model and idealised drying curves. Hydrol. Earth Syst. Sci., 16, 46934705, doi:10.5194/hess-16-4693-2012.

    • Search Google Scholar
    • Export Citation
  • Calder, I., 1979: Do trees use more water than grass? Water Serv., 83, 1114.

  • Calder, I., 1996: Dependence of rainfall interception on drop size: 1. Development of the two-layer stochastic model. J. Hydrol., 185, 363378, doi:10.1016/0022-1694(95)02998-2.

    • Search Google Scholar
    • Export Citation
  • Carlyle-Moses, D., and Price A. G. , 2007: Modelling canopy interception loss from a Madrean pine-oak stand, northeastern Mexico. Hydrol. Processes, 21, 25722580, doi:10.1002/hyp.6790.

    • Search Google Scholar
    • Export Citation
  • Carlyle-Moses, D., and Gash J. H. C. , 2011: Rainfall interception loss by forest canopies.Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, D. F. Levia, D. Carlyle-Moses, and T. Tanaka, Eds., Springer-Verlag, 407–423.

  • Chu, H.-S., and Coauthors, 2014: Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan. Hydrol. Processes, 28, 11901214, doi:10.1002/hyp.9662.

    • Search Google Scholar
    • Export Citation
  • Clark, K. L., Nadkarni N. M. , Schaefer D. , and Gholz H. L. , 1998: Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. J. Trop. Ecol., 14, 2745, doi:10.1017/S0266467498000030.

    • Search Google Scholar
    • Export Citation
  • Cuartas, L. A., Tomasella J. , Nobre A. D. , Hodnett M. G. , Maarten J. , and Munera J. C. , 2007: Interception water-partitioning dynamics for a pristine rainforest in central Amazonia: Marked differences between normal and dry years. Agric. For. Meteor., 145, 6983, doi:10.1016/j.agrformet.2007.04.008.

    • Search Google Scholar
    • Export Citation
  • Davies-Barnard, T., Valdes P. J. , Jones C. D. , and Singarayer J. S. , 2014: Sensitivity of a coupled climate model to canopy interception capacity. Climate Dyn., 42, 17151732, doi:10.1007/s00382-014-2100-1.

    • Search Google Scholar
    • Export Citation
  • Deguchi, A., Hattori S. , and Park H.-T. , 2006: The influence of seasonal changes in canopy structure on interception loss: Application of the revised Gash model. J. Hydrol., 318, 80102, doi:10.1016/j.jhydrol.2005.06.005.

    • Search Google Scholar
    • Export Citation
  • Dolman, A. J., 1986: Estimate of roughness length and zero plane displacement for a foliated and non-foliated oak canopy. Agric. For. Meteor., 36, 241248, doi:10.1016/0168-1923(86)90038-9.

    • Search Google Scholar
    • Export Citation
  • Dunin, F., O’Loughlin E. , and Reyenga W. , 1988: Interception loss from eucalypt forest: Lysimeter determination of hourly rates for long term evaluation. Hydrol. Processes, 2, 315329, doi:10.1002/hyp.3360020403.

    • Search Google Scholar
    • Export Citation
  • Dunkerley, D., 2009: Evaporation of impact water droplets in interception processes: Historical precedence of the hypothesis and a brief literature overview. J. Hydrol., 376, 599604, doi:10.1016/j.jhydrol.2009.08.004.

    • Search Google Scholar
    • Export Citation
  • Dunkerley, D., 2015: Intra-event intermittency of rainfall: An analysis of the metrics of rain and no-rain periods. Hydrol. Processes, 29, 32943305, doi:10.1002/hyp.10454.

    • Search Google Scholar
    • Export Citation
  • Fan, J., Oestergaard K. T. , Guyot A. , and Lockington D. A. , 2014: Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia. J. Hydrol., 515, 156165, doi:10.1016/j.jhydrol.2014.04.066.

    • Search Google Scholar
    • Export Citation
  • Feagin, R. A., and Coauthors, 2010: Barrier islands: Coupling anthropogenic stability with ecological sustainability. J. Coastal Res., 26, 987992, doi:10.2112/09-1185.1.

    • Search Google Scholar
    • Export Citation
  • Fleischbein, K., Wilcke W. , Goller R. , Boy J. , Valarezo C. , Zech W. , and Knoblich K. , 2005: Rainfall interception in a lower montane forest in Ecuador: Effects of canopy properties. Hydrol. Processes, 19, 13551371, doi:10.1002/hyp.5562.

    • Search Google Scholar
    • Export Citation
  • Freiberg, M., 2001: The influence of epiphyte cover on branch temperature in a tropical tree. Plant Ecol., 153, 241250, doi:10.1023/A:1017540629725.

    • Search Google Scholar
    • Export Citation
  • Friesen, J., van Beek C. , Selker J. , Savenije H. H. G. , and van de Giesen N. , 2008: Tree rainfall interception measured by stem compression. Water Resour. Res., 44, W00D15, doi:10.1029/2008WR007074.

    • Search Google Scholar
    • Export Citation
  • Friesen, J., Lundquist J. , and Van Stan J. T. , 2015: Evolution of forest precipitation water storage measurement methods. Hydrol. Processes, 29, 25042520, doi:10.1002/hyp.10376.

    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., 1979: An analytical model of rainfall interception by forests. Quart. J. Roy. Meteor. Soc., 105, 4355, doi:10.1002/qj.49710544304.

    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., Lloyd C. R. , and Lachaud G. , 1995: Estimating sparse forest rainfall interception with an analytical model. J. Hydrol., 170, 7986, doi:10.1016/0022-1694(95)02697-N.

    • Search Google Scholar
    • Export Citation
  • Georgia Office of the State Climatologist, 2012: Office of the State Climatologist. Accessed 13 September 2013. [Available online at https://epd.georgia.gov/office-state-climatologist.]

  • Ghimire, C. P., Bruijnzeel L. A. , Lubczynski M. W. , and Bonell M. , 2012: Rainfall interception by natural and planted forests in the Middle Mountains of central Nepal. J. Hydrol., 475, 270280, doi:10.1016/j.jhydrol.2012.09.051.

    • Search Google Scholar
    • Export Citation
  • Guevara-Escobar, A., Cervantes-Jimenez M. , Suzan-Azpiri H. , Gonzalez-Sosa E. , Hernandez-Sandoval L. , Mald-Barrera G. , and Martinez-Diaz M. , 2011: Fog interception by Ball moss (Tillandsia recurvate). Hydrol. Earth Syst. Sci., 15, 25092518, doi:10.5194/hess-15-2509-2011.

    • Search Google Scholar
    • Export Citation
  • Herwitz, S. R., 1987: Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation. Earth Surf. Processes Landforms, 12, 425432, doi:10.1002/esp.3290120408.

    • Search Google Scholar
    • Export Citation
  • Hölscher, D., Köhler L. , van Dijk A. I. J. M. , and Bruijnzeel L. A. , 2004: The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. J. Hydrol., 292, 308322, doi:10.1016/j.jhydrol.2004.01.015.

    • Search Google Scholar
    • Export Citation
  • Holwerda, F., Bruijnzeel L. A. , Scatena F. N. , Vugts H. F. , and Meesters A. G. C. A. , 2012: Wet canopy evaporation from a Puerto Rican lower montane rain forest: The importance of realistically estimated aerodynamic conductance. J. Hydrol., 414–415, 115, doi:10.1016/j.jhydrol.2011.07.033.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., Chen S. , and Lin T. , 2005: Continuous monitoring of water loading of trees and canopy rainfall interception using the strain gauge method. J. Hydrol., 311, 17, doi:10.1016/j.jhydrol.2004.08.036.

    • Search Google Scholar
    • Export Citation
  • Huntingford, C., Cox P. M. , Mercado J. M. , Sitch S. , Bellouin N. , Boucher O. , and Gedney N. , 2011: Highly contrasting effects of different climate forcing agents on terrestrial ecosystem services. Philos. Trans. Roy. Soc. London, A369, 20262037, doi:10.1098/rsta.2010.0314.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A., 2000: Measuring and modelling the impact of land-use change in tropical hillsides: The role of cloud interception to epiphytes. Adv. Environ. Monit. Modell., 1, 118148.

    • Search Google Scholar
    • Export Citation
  • Klaassen, W., Bosveld F. , and de Water E. , 1998: Water storage and evaporation constituents of rainfall interception. J. Hydrol., 212-213, 3650, doi:10.1016/S0022-1694(98)00200-5.

    • Search Google Scholar
    • Export Citation
  • Levia, D. F., Keim R. F. , Carlyle-Moses D. , and Frost E. E. , 2011: Throughfall and stemflow in wooded ecosystems. Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, D. F. Levia, D. Carlyle-Moses, and T. Tanaka, Eds., Springer-Verlag, 425–443.

  • Leyton, L., Reynolds R. C. , and Thompson F. B. , 1967: Rainfall interception in forest and moorland.Forest Hydrology, W. E. Sopper and H. W. Lull, Eds., Pergamon Press, 163–179.

  • Limousin, J.-M., Rambal S. , Ourcival J.-M. , and Joffre R. , 2008: Modelling rainfall interception in a Mediterranean Quercus ilex ecosystem: Lesson from a throughfall exclusion experiment. J. Hydrol., 357, 5766, doi:10.1016/j.jhydrol.2008.05.001.

    • Search Google Scholar
    • Export Citation
  • Link, T. E., Unsworth M. , and Marks D. , 2004: The dynamics of rainfall interception by a seasonal temperate rainforest. Agric. For. Meteor., 124, 171191, doi:10.1016/j.agrformet.2004.01.010.

    • Search Google Scholar
    • Export Citation
  • Llorens, P., Domingo F. , Garcia-Estringana P. , Muzylo A. , and Gallart F. , 2014: Canopy wetness patterns in a Mediterranean deciduous stand. J. Hydrol., 512, 254262, doi:10.1016/j.jhydrol.2014.03.007.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, C. E., 1994: Physiological ecology of the Bromeliaceae. Bot. Rev., 60, 182, doi:10.1007/BF02856593.

  • Monteith, J. L., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205234.

  • Murakami, S., 2006: A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. J. Hydrol., 319, 7282, doi:10.1016/j.jhydrol.2005.07.002.

    • Search Google Scholar
    • Export Citation
  • Murakami, S., 2007: Application of three canopy interception models to a young stand of Japanese cypress and interpretation in terms of interception mechanism. J. Hydrol., 342, 305319, doi:10.1016/j.jhydrol.2007.05.032.

    • Search Google Scholar
    • Export Citation
  • Muzylo, A., Llorens P. , Valente F. , Keizer J. J. , Domingo F. , and Gash J. H. C. , 2009: A review of rainfall interception modelling. J. Hydrol., 370, 191206, doi:10.1016/j.jhydrol.2009.02.058.

    • Search Google Scholar
    • Export Citation
  • Muzylo, A., Valente F. , Domingo F. , and Llorens P. , 2012: Modelling rainfall partitioning with sparse Gash and Rutter models in a downy oak stand in leafed and leafless periods. Hydrol. Processes, 26, 31613173, doi:10.1002/hyp.8401.

    • Search Google Scholar
    • Export Citation
  • Pereira, F. L., Gash J. H. C. , David J. S. , and Valente F. , 2009a: Evaporation of intercepted rainfall from isolated evergreen oak trees. Do crowns behave as wet bulbs? Agric. For. Meteor., 149, 667679, doi:10.1016/j.agrformet.2008.10.013.

    • Search Google Scholar
    • Export Citation
  • Pereira, F. L., Gash J. H. C. , David J. S. , David T. S. , Monteiro P. R. , and Valente F. , 2009b: Modelling interception loss from evergreen oak Mediterranean savannas: Application of a tree-based modelling approach. Agric. For. Meteor., 149, 680688, doi:10.1016/j.agrformet.2008.10.014.

    • Search Google Scholar
    • Export Citation
  • Pypker, T. G., Unsworth M. H. , and Bond B. J. , 2006a: The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Can. J. For. Res., 36, 809818, doi:10.1139/x05-298.

    • Search Google Scholar
    • Export Citation
  • Pypker, T. G., Unsworth M. H. , and Bond B. J. , 2006b: The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Can. J. For. Res., 36, 819832, doi:10.1139/x05-286.

    • Search Google Scholar
    • Export Citation
  • Roberts, J., Gash J. H. C. , and Tani M. , 2005: Controls on evaporation in lowland tropical rainforest. Forests, Water and People in the Humid Tropics: Past, Present and Future Hydrological Research for Integrated Land and Water Management, M. Bonell and L. A. Bruijnzeel, Eds., Cambridge University Press, 287–313, doi:10.1017/CBO9780511535666.019.

  • Roy, S., Byrne J. , and Pickering C. , 2012: A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green., 11, 351363, doi:10.1016/j.ufug.2012.06.006.

    • Search Google Scholar
    • Export Citation
  • Rutter, A. J., 1967: Evaporation in forests. Endeavour, 26, 3943.

  • Rutter, A. J., Kershaw K. A. , and Robins P. C. , 1971: A predictive model of rainfall interception in forest, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteor., 9, 367384, doi:10.1016/0002-1571(71)90034-3.

    • Search Google Scholar
    • Export Citation
  • Rutter, A. J., Morton A. J. , and Robins P. C. , 1975: A predictive model of rainfall interception in forests. II. Generalisation of the model and comparison with observations in some coniferous and hardwood stands. J. Appl. Ecol., 12, 367384, doi:10.2307/2401739.

    • Search Google Scholar
    • Export Citation
  • Sadeghi, S. M. M., Attarod P. , Van Stan J. T. , Pypker T. G. , and Dunkerley D. , 2015: Efficiency of the reformulated Gash’s interception model in semiarid afforestations. Agric. For. Meteor., 201, 7685, doi:10.1016/j.agrformet.2014.10.006.

    • Search Google Scholar
    • Export Citation
  • Savenije, H. H. G., 2004: The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Processes, 18, 15071511, doi:10.1002/hyp.5563.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 2007: Putting the ‘vap’ into evaporation. Hydrol. Earth Syst. Sci., 11, 210244, doi:10.5194/hess-11-210-2007.

    • Search Google Scholar
    • Export Citation
  • Šraj, M., Brilly M. , and Mikos M. , 2008: Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agric. For. Meteor., 148, 121134, doi:10.1016/j.agrformet.2007.09.007.

    • Search Google Scholar
    • Export Citation
  • Vacher, H. L., 1988: Dupuit–Ghyben–Herzberg analysis of strip-island lenses. Geol. Soc. Amer. Bull., 100, 580591, doi:10.1130/0016-7606(1988)100<0580:DGHAOS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Valente, F., David J. S. , and Gash J. H. C. , 1997: Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. J. Hydrol., 190, 141162, doi:10.1016/S0022-1694(96)03066-1.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., Wang-Erlandsson L. , Keys P. W. , and Savenije H. H. G. , 2014: Contrasting roles of interception and transpiration in the hydrologic cycle—Part 2: Moisture recycling. Earth Syst. Dyn., 5, 471489, doi:10.5194/esd-5-471-2014.

    • Search Google Scholar
    • Export Citation
  • Van Dijk, A. I. J. M., and Bruijnzeel L. A. , 2001: Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system. J. Hydrol., 247, 239262, doi:10.1016/S0022-1694(01)00393-6.

    • Search Google Scholar
    • Export Citation
  • Van Stan, J. T., and Levia D. F. , 2010: Inter- and intraspecific variation in stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to bark microrelief in the eastern United States. Ecohydrology, 3, 1119, doi:10.1002/eco.83.

    • Search Google Scholar
    • Export Citation
  • Van Stan, J. T., and Pypker T. G. , 2015: A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci. Total Environ., 536, 813824, doi:10.1016/j.scitotenv.2015.07.134.

    • Search Google Scholar
    • Export Citation
  • Van Stan, J. T., Martin K. , Friesen J. , Jarvis M. T. , Lundquist J. D. , and Levia D. F. , 2013: Evaluation of an instrumental method to reduce error in canopy water storage estimates via mechanical displacement. Water Resour. Res., 49, 5463, doi:10.1029/2012WR012666.

    • Search Google Scholar
    • Export Citation
  • Van Stan, J. T., Stubbins A. , Bittar T. , Reichard J. S. , Wright K. A. , and Jenkins R. B. , 2015: Tillandsia usneoides (L.) L. (Spanish moss) water storage and leachate characteristics from two maritime oak forest settings. Ecohydrology, 8, 9881004, doi:10.1002/eco.1549.

    • Search Google Scholar
    • Export Citation
  • Veneklaas, E. J., Zagt R. J. , Van Leerdam A. , Van Ek R. , Broekhoven A. J. , and Van Genderen M. , 1990: Hydrological properties of the epiphyte mass of a montane tropical rain forest, Columbia. Vegetatio, 89, 183192, doi:10.1007/BF00032170.

    • Search Google Scholar
    • Export Citation
  • Villarreal, E. L., and Bengtsson A. , 2004: Inner city stormwater control using a combination of best management practices. Ecol. Eng., 22, 279298, doi:10.1016/j.ecoleng.2004.06.007.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., and McJannet D. , 2006: On interception modelling of a lowland coastal rainforest in northern Queensland, Australia. J. Hydrol., 329, 477488, doi:10.1016/j.jhydrol.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., and McJannet D. , 2008: Modelling interception in coastal and montane rainforests in northern Queensland, Australia. J. Hydrol., 348, 480495, doi:10.1016/j.jhydrol.2007.10.019.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Peng C. , Li W. , Fang X. , Zhang T. , Zhu Q. , Chen H. , and Zhao P. , 2013: Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: Recent progress and future challenges. Environ. Rev., 21, 103115, doi:10.1139/er-2013-0006.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1258 832 83
PDF Downloads 346 61 9