• Ahmed, K. F., Wang G. , Silander J. , Wilson A. M. , Allen J. M. , Horton R. , and Anyah R. , 2013: Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast. Global Planet. Change, 100, 320332, doi:10.1016/j.gloplacha.2012.11.003.

    • Search Google Scholar
    • Export Citation
  • Arnell, N., and Coauthors, 2001: Hydrology and water resources. Climate Change 2001: Impacts, Adaptation and Vulnerability, J. J. McCarthy et al., Eds., Cambridge University Press, 191–234.

  • Arsenault, R., Malo J. S. , Brissette F. , Minville M. , and Leconte R. , 2013: Structural and non-structural climate change adaptation strategies for the Péribonka water resource system. Water Resour. Manage., 27, 20752087, doi:10.1007/s11269-013-0275-6.

    • Search Google Scholar
    • Export Citation
  • Arsenault, R., Poulin A. , Côté P. , and Brissette F. , 2014: Comparison of stochastic optimization algorithms in hydrological model calibration. J. Hydrol. Eng., 19, 13741384, doi:10.1061/(ASCE)HE.1943-5584.0000938.

    • Search Google Scholar
    • Export Citation
  • Bates, B. C., Kundzewicz Z. W. , Wu S. , and Palutikof J. P. , Eds., 2008: Climate change and water. IPCC Tech. Paper VI, 210 pp. [Available online at https://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf.]

  • Chen, J., Brissette F. P. , and Leconte R. , 2011a: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401, 190202, doi:10.1016/j.jhydrol.2011.02.020.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , Poulin A. , and Leconte R. , 2011b: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res., 47, W12509, doi:10.1029/2011WR010602.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , and Leconte R. , 2012: Downscaling of weather generator parameters to quantify the hydrological impacts of climate change. Climate Res., 51, 185200, doi:10.3354/cr01062.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , Chaumont D. , and Braun M. , 2013a: Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J. Hydrol., 479, 200214, doi:10.1016/j.jhydrol.2012.11.062.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , Chaumont D. , and Braun M. , 2013b: Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res., 49, 41874205, doi:10.1002/wrcr.20331.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , and Lucas-Picher P. , 2015: Assessing the limits of bias-correcting climate model outputs for climate change impact studies. J. Geophys. Res. Atmos., 120, 11231136, doi:10.1002/2014JD022635.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., Boberg F. , Christensen O. B. , and Lucas-Picher P. , 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.

    • Search Google Scholar
    • Export Citation
  • Deser, C., Knutti R. , Solomon S. , and Phillips A. S. , 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Search Google Scholar
    • Export Citation
  • Deser, C., Phillips A. , Bourdette V. , and Teng H. , 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Di Luca, A., de Elia R. , and Laprise R. , 2012: Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Climate Dyn., 38, 12291247, doi:10.1007/s00382-011-1068-3.

    • Search Google Scholar
    • Export Citation
  • Ehret, U., Zehe E. , Wulfmeyer V. , Warrach-Sagi K. , and Liebert J. , 2012: HESS opinions “Should we apply bias correction to global and regional climate model data?”. Hydrol. Earth Syst. Sci., 16, 33913404, doi:10.5194/hess-16-3391-2012.

    • Search Google Scholar
    • Export Citation
  • Eisner, S., Voss F. , and Kynast E. , 2012: Statistical bias correction of global climate projections—Consequences for large scale modeling of flood flows. Adv. Geosci., 31, 7582, doi:10.5194/adgeo-31-75-2012.

    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and McCabe M. , 2010: Regional climate simulation over Australia’s Murray–Darling basin: A multitemporal assessment. J. Geophys. Res., 115, D14114, doi:10.1029/2010JD013816.

    • Search Google Scholar
    • Export Citation
  • Fatichi, S., Rimkus S. , Burlando P. , and Bordoy R. , 2014: Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies. Sci. Total Environ., 493, 11711182, doi:10.1016/j.scitotenv.2013.12.014.

    • Search Google Scholar
    • Export Citation
  • Feser, F., Rockel B. , von Storch H. , Winterfeldt J. , and Zahn M. , 2011: Regional climate models add value to global model data: A review and selected examples. Bull. Amer. Meteor. Soc., 92, 11811192, doi:10.1175/2011BAMS3061.1.

    • Search Google Scholar
    • Export Citation
  • Fortin, V., 2000: Le modèle météo-apport HSAMI: Historique, théorie et application. Research rep., Institut de Recherche d’Hydro-Québec, Varennes, QC, Canada, 68 pp.

  • Fowler, H. J., Ekstrom M. , Blenkinsop S. , and Smith A. P. , 2007: Estimating change in extreme European precipitation using a multi-model ensemble. J. Geophys. Res., 112, D18104, doi:10.1029/2007JD008619.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., Taylor K. E. , and Doutriaux C. , 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Hansen, N., and Ostermeier A. , 1996: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. Proc. IEEE Int. Conf. on Evolutionary Computation, Nagoya, Japan, IEEE, 312–317, doi:10.1109/ICEC.1996.542381.

  • Hansen, N., and Ostermeier A. , 2001: Completely derandomized selfadaptation in evolution strategies. Evol. Comput., 9, 159195, doi:10.1162/106365601750190398.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., McKenney D. W. , Lawrence K. , Pedlar J. H. , Hopkinson R. F. , Milewska E. , and Papadopol P. , 2009: Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. J. Appl. Meteor. Climatol., 48, 725741, doi:10.1175/2008JAMC1979.1.

    • Search Google Scholar
    • Export Citation
  • Ines, A. V. M., and Hansen J. W. , 2006: Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteor., 138, 4453, doi:10.1016/j.agrformet.2006.03.009.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Johnson, F., and Sharma A. , 2012: A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resour. Res., 48, W01504, doi:10.1029/2011WR010464.

    • Search Google Scholar
    • Export Citation
  • Lafon, T., Dadson S. , Buys G. , and Prudhomme C. , 2013: Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol., 33, 13671381, doi:10.1002/joc.3518.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., Boberg F. , Christensen J. H. , and Berg P. , 2013: Dynamical downscaling with reinitializations: A method to generate finescale climate datasets suitable for impact studies. J. Hydrometeor., 14, 11591174, doi:10.1175/JHM-D-12-063.1.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., Riboust P. , Somot S. , and Laprise R. , 2015: Reconstruction of the spring 2011 Richelieu River flood by two regional climate models and a hydrological model. J. Hydrometeor., 16, 3654, doi:10.1175/JHM-D-14-0116.1.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, doi:10.1175/JCLI-D-12-00821.1.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of Phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, doi:10.1175/BAMS-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Minville, M., Brissette F. , and Leconte R. , 2008: Uncertainty of the impact of climate change on the hydrology of a Nordic watershed. J. Hydrol., 358, 7083, doi:10.1016/j.jhydrol.2008.05.033.

    • Search Google Scholar
    • Export Citation
  • Mpelasoka, F. S., and Chiew F. H. S. , 2009: Influence of rainfall scenario construction methods on runoff projections. J. Hydrometeor., 10, 11681183, doi:10.1175/2009JHM1045.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., 1999: An evaluation of statistical and dynamical techniques for downscaling local climate. J. Climate, 12, 22562284, doi:10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nash, J., and Sutcliffe J. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Piani, C., Haerter O. , and Corpola E. , 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, doi:10.1007/s00704-009-0134-9.

    • Search Google Scholar
    • Export Citation
  • Poulin, A., Brissette F. , Leconte R. , Arsenault R. , and Malo J. S. , 2011: Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J. Hydrol., 409, 626636, doi:10.1016/j.jhydrol.2011.08.057.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., Frei C. , and Vidale P. L. , 2006: Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol., 26, 679689, doi:10.1002/joc.1287.

    • Search Google Scholar
    • Export Citation
  • Sharma, D., Das Gupta A. , and Babel M. S. , 2007: Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River basin, Thailand. Hydrol. Earth Syst. Sci., 11, 13731390, doi:10.5194/hess-11-1373-2007.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., Kharin V. , Zhang X. , Zwiers F. , and Bronaugh D. , 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, doi:10.1002/jgrd.50203.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and Seibert J. , 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456–457, 1229, doi:10.1016/j.jhydrol.2012.05.052.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and Seibert J. , 2013: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Syst. Sci., 17, 50615077, doi:10.5194/hess-17-5061-2013.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., Gobiet A. , and Leuprecht A. , 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 15301544, doi:10.1002/joc.2168.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., Gobiet A. , and Heinrich G. , 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449468, doi:10.1007/s10584-011-0224-4.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., Douvis C. , and Zerefos C. , 2012: Does dynamical downscaling introduce novel information in climate model simulations of precipitation change over a complex topography region? Int. J. Climatol., 32, 15721578, doi:10.1002/joc.2360.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Ranasinghe R. , Maskey S. , Van Gelder P. H. A. J. M. , and Vrijling J. K. , 2016: Comparison of empirical statistical methods for downscaling daily climate projections from CMIP5 GCMs: A case study of the Huai River basin, China. Int. J. Climatol., 36, 145164. doi:10.1002/joc.4334.

    • Search Google Scholar
    • Export Citation
  • White, R. H., and Toumi R. , 2013: The limitations of bias correcting regional climate model inputs. Geophys. Res. Lett., 40, 29072912, doi:10.1002/grl.50612.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 7 7 7

Using Natural Variability as a Baseline to Evaluate the Performance of Bias Correction Methods in Hydrological Climate Change Impact Studies

View More View Less
  • 1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
  • | 2 Ouranos Consortium, Montreal, Quebec, Canada
  • | 3 École de technologie supérieure, Université du Québec, Montreal, Quebec, Canada
  • | 4 École de technologie supérieure, and Centre pour l'étude et la simulation du climat à l'échelle régionale, Université du Québec, Montreal, Quebec, Canada
Restricted access

Abstract

Postprocessing of climate model outputs is usually performed to remove biases prior to performing climate change impact studies. The evaluation of the performance of bias correction methods is routinely done by comparing postprocessed outputs to observed data. However, such an approach does not take into account the inherent uncertainty linked to natural climate variability and may end up recommending unnecessary complex postprocessing methods. This study evaluates the performance of bias correction methods using natural variability as a baseline. This baseline implies that any bias between model simulations and observations is only significant if it is larger than the natural climate variability. Four bias correction methods are evaluated with respect to reproducing a set of climatic and hydrological statistics. When using natural variability as a baseline, complex bias correction methods still outperform the simplest ones for precipitation and temperature time series, although the differences are much smaller than in all previous studies. However, after driving a hydrological model using the bias-corrected precipitation and temperature, all bias correction methods perform similarly with respect to reproducing 46 hydrological metrics over two watersheds in different climatic zones. The sophisticated distribution mapping correction methods show little advantage over the simplest scaling method. The main conclusion is that simple bias correction methods appear to be just as good as other more complex methods for hydrological climate change impact studies. While sophisticated methods may appear more theoretically sound, this additional complexity appears to be unjustified in hydrological impact studies when taking into account the uncertainty linked to natural climate variability.

Corresponding author address: Jie Chen, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 299 Bayi Road, Wuchang Distinct, Wuhan, Hubei 430072, China. E-mail: jiechen@whu.edu.cn

Abstract

Postprocessing of climate model outputs is usually performed to remove biases prior to performing climate change impact studies. The evaluation of the performance of bias correction methods is routinely done by comparing postprocessed outputs to observed data. However, such an approach does not take into account the inherent uncertainty linked to natural climate variability and may end up recommending unnecessary complex postprocessing methods. This study evaluates the performance of bias correction methods using natural variability as a baseline. This baseline implies that any bias between model simulations and observations is only significant if it is larger than the natural climate variability. Four bias correction methods are evaluated with respect to reproducing a set of climatic and hydrological statistics. When using natural variability as a baseline, complex bias correction methods still outperform the simplest ones for precipitation and temperature time series, although the differences are much smaller than in all previous studies. However, after driving a hydrological model using the bias-corrected precipitation and temperature, all bias correction methods perform similarly with respect to reproducing 46 hydrological metrics over two watersheds in different climatic zones. The sophisticated distribution mapping correction methods show little advantage over the simplest scaling method. The main conclusion is that simple bias correction methods appear to be just as good as other more complex methods for hydrological climate change impact studies. While sophisticated methods may appear more theoretically sound, this additional complexity appears to be unjustified in hydrological impact studies when taking into account the uncertainty linked to natural climate variability.

Corresponding author address: Jie Chen, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 299 Bayi Road, Wuchang Distinct, Wuhan, Hubei 430072, China. E-mail: jiechen@whu.edu.cn
Save