• Bosilovich, M. G., and Sun W. Y. , 1999: Numerical simulation of the 1993 Midwestern flood: Land–atmosphere interactions. J. Climate, 12, 14901505, doi:10.1175/1520-0442(1999)012<1490:NSOTMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Schubert S. D. , 2001: Precipitation recycling over the central United States diagnosed from the GEOS-1 Data Assimilation System. J. Hydrometeor., 2, 2635, doi:10.1175/1525-7541(2001)002<0026:PROTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, F.-C., and Wallace J. M. , 1987: Meteorological conditions during heat waves and droughts in the United States Great Plains. Mon. Wea. Rev., 115, 253269, doi:10.1175/1520-0493(1987)115<1253:MCDHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13, 29002922, doi:10.1175/1520-0442(2000)013<2900:UAGSWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Kinter J. L. III, 2009: The Maya Express—Late spring floods in the US Midwest. Eos, Trans. Amer. Geophys. Union, 90, 101102, doi:10.1029/2009EO120001.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Schlosser C. A. , and Brubaker K. L. , 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, doi:10.1175/2008JHM1016.1.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., and Coauthors, 2006: Simulations of present and future climates in the western United States with four nested regional climate models. J. Climate, 19, 873895, doi:10.1175/JCLI3669.1.

    • Search Google Scholar
    • Export Citation
  • Elguindi, N., and Coauthors, 2011: Regional climatic model RegCM user manual version 4.1. Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, 32 pp. [Available online at http://gforge.ictp.it/gf/download/docmanfileversion/21/544/ReferenceMan4.1.pdf.]

  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570572, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., Seneviratne S. I. , Vidale P. L. , Lüthi D. , and Schär C. , 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, doi:10.1175/JCLI4288.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Chappell C. F. , 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733, doi:10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729, doi:10.3354/cr01018.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1994: A description of the Fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp., doi:10.5065/D60Z716B.

  • Hoerling, M., and Coauthors, 2013: An interpretation of the origins of the 2012 central Great Plains drought. NOAA Assessment Rep., 50 pp. [Available online at http://www.esrl.noaa.gov/psd/csi/factsheets/pdf/noaa-gp-drought-assessment-report.pdf.]

  • Hoerling, M., Eischeid J. , Kumar A. , Leung R. , Mariotti A. , Mo K. , Schubert S. , and Seager R. , 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., de Bruijn E. I. F. , and Pan H. L. , 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 15611575, doi:10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, P., and Harris I. , 2013: CRU TS3.21: University of East Anglia Climatic Research Unit (CRU) Time-Series (TS) version 3.21 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2012). NCAS British Atmospheric Data Centre, 1 April 2016, doi:10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992.

  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S.-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., Hack J. J. , Bonan G. B. , Boville B. A. , Briegleb B. P. , Williamson D. L. , and Rasch P. J. , 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, 152 pp., doi:10.5065/D6FF3Q99.

  • Kim, Y., and Wang G. , 2007: Impact of initial soil moisture anomalies on subsequent precipitation over North America in the coupled land–atmosphere model CAM3–CLM3. J. Hydrometeor., 8, 513533, doi:10.1175/JHM611.1.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., and Wang G. , 2012: Soil moisture–vegetation–precipitation feedback over North America: Its sensitivity to soil moisture climatology. J. Geophys. Res., 117, D18115, doi:10.1029/2012JD017584.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multimodel experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, doi:10.1175/2011JHM1365.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Chang Y. , and Schubert S. D. , 2014: A mechanism for land–atmosphere feedback involving planetary wave structures. J. Climate, 27, 92909301, doi:10.1175/JCLI-D-14-00315.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Changnon S. S. , Reike B. , and Arritt R. W. , 1996: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bull. Amer. Meteor. Soc., 77, 15071518, doi:10.1175/1520-0477(1996)077<1507:TJHWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Qian Y. , and Bian X. D. , 2003: Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part I: Seasonal statistics. J. Climate, 16, 18921911, doi:10.1175/1520-0442(2003)016<1892:HOTWUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., Li L. , Kunkel K. E. , Ting M. , and Wang J. X. L. , 2004: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17, 35103528, doi:10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mearns, L., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, doi:10.1175/BAMS-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Tebaldi C. , 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Mei, R., and Wang G. L. , 2011: Impact of sea surface temperature and soil moisture on summer precipitation in the United States based on observational data. J. Hydrometeor., 12, 10861099, doi:10.1175/2011JHM1312.1.

    • Search Google Scholar
    • Export Citation
  • Mei, R., and Wang G. L. , 2012: Summer land–atmosphere coupling strength in the United States: Comparison among observations, reanalysis data and numerical models. J. Hydrometeor., 13, 10101022, doi:10.1175/JHM-D-11-075.1.

    • Search Google Scholar
    • Export Citation
  • Mei, R., Wang G. L. , and Gu H. , 2013: Summer land–atmosphere coupling strength over the United States: Results from the regional climate model RegCM4–CLM3.5. J. Hydrometeor., 14, 946962, doi:10.1175/JHM-D-12-043.1.

    • Search Google Scholar
    • Export Citation
  • Meng, L., and Quiring S. M. , 2009: Observational relationship of sea surface temperature and precedent soil moisture with summer precipitation in the U.S. Great Plains. Int. J. Climatol., 30, 884893, doi:10.1002/joc.1941.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1952: The annual course of month-to-month persistence in climatic anomalies. Bull. Amer. Meteor. Soc., 33, 279285.

  • Namias, J., 1982: Anatomy of Great Plains protracted heat waves (especially the 1980 U.S. summer drought). Mon. Wea. Rev., 110, 824838, doi:10.1175/1520-0493(1982)110<0824:AOGPPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1991: Spring and summer 1988 drought over the contiguous United States—Causes and prediction. J. Climate, 4, 5465, doi:10.1175/1520-0442(1991)004<0054:SASDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., Marshall S. , Erickson D. J. III, Roads J. O. , and Robertson F. R. , 2002: Thresholds in atmosphere–soil moisture interactions: Results from climate model studies. J. Geophys. Res., 107, 4244, doi:10.1029/2001JD001045.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Eltahir E. A. B. , 2001: Pathways relating soil moisture conditions to future summer precipitation within a model of the land–atmosphere system. J. Climate, 14, 12271242, doi:10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Eltahir E. A. B. , 2002: Teleconnections of soil moisture and rainfall during the 1993 Midwest summer flood. Geophys. Res. Lett., 29, 1865, doi:10.1029/2002GL014815.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., Small E. F. , and Eltahir E. A. B. , 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes with RegCM. J. Geophys. Res., 105, 29 57929 594, doi:10.1029/2000JD900415.

    • Search Google Scholar
    • Export Citation
  • Palecki, M. A., Changnon S. A. , and Kunkel K. E. , 2001: The nature and impacts of the July 1999 heat wave in the midwestern United States: Learning from the lessons of 1995. Bull. Amer. Meteor. Soc., 82, 13531367, doi:10.1175/1520-0477(2001)082<1353:TNAIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Suarez M. J. , Pegion P. J. , Koster R. D. , and Bacmeister J. T. , 2004: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, doi:10.1126/science.1095048.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Naik N. , and Vecchi G. A. , 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, doi:10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Seth, A., and Giorgi F. , 1998: The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Climate, 11, 26982712, doi:10.1175/1520-0442(1998)011<2698:TEODCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., and Steiner A. L. , 2011: The role of soil ice in land–atmosphere coupling over the United States: A soil moisture–precipitation winter feedback mechanism. J. Geophys. Res., 116, D02113, doi:10.1029/2010JD014333.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Guillemot C. J. , 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, doi:10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Branstator G. W. , and Arkin P. A. , 1988: Origins of the 1988 North American drought. Science, 242, 16401645, doi:10.1126/science.242.4886.1640.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Smith L. , Qian T. , Dai A. , and Fasullo J. , 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • Wang, G., Kim Y. , and Wang D. , 2007: Quantifying the strength of soil moisture–precipitation coupling and its sensitivity to changes in surface water budget. J. Hydrometeor., 8, 551570, doi:10.1175/JHM573.1.

    • Search Google Scholar
    • Export Citation
  • Wang, G., Yu M. , Pal J. S. , Mei R. , Bonan G. , Levis S. , and Thornton P. , 2016a: On the development of a coupled regional climate–vegetation model RCM–CLM–CN–DV and its validation in Tropical Africa. Climate Dyn., 46, 515539, doi:10.1007/s00382-015-2596-z.

    • Search Google Scholar
    • Export Citation
  • Wang, G., Yu M. , and Xue Y. K. , 2016b: Modeling the potential contribution of land cover changes to the Sahel drought using a regional climate model: Sensitivity to lateral boundary conditions and experimental approach. Climate Dyn., doi:10.1007/s00382-015-2812-x, in press.

    • Search Google Scholar
    • Export Citation
  • Wang, H., Schubert S. , Koster R. , Ham Y.-G. , and Suarez M. , 2014: On the role of SST forcing in the 2011 and 2012 extreme U.S. heat and drought: A study in contrasts. J. Climate, 15, 12551273, doi:10.1175/JHM-D-13-069.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S. Y., Gillies R. R. , Takle E. S. , and Gutowski W. J. , 2009: Evaluation of precipitation in the Intermountain Region as simulated by the NARCCAP regional climate models. Geophys. Res. Lett., 36, L11704, doi:10.1029/2009GL037930.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., and Nigam S. , 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, doi:10.1175/2007JCLI1586.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., Ruiz-Barradas A. , and Nigam S. , 2009a: Pentad evolution of the 1988 drought and 1993 flood over the Great Plains: An NARR perspective on the atmospheric and terrestrial water balance. J. Climate, 22, 53665384, doi:10.1175/2009JCLI2684.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., Schubert S. , and Wang H. L. , 2009b: Warm season variations in the low-level circulation and precipitation over the central United States in observations, AMIP simulations, and idealized SST experiments. J. Climate, 22, 54015420, doi:10.1175/2009JCLI2984.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R. G., and Kinter J. L. III, 2009: An analysis of the relationship of U.S. droughts with SST and soil moisture: Distinguishing the time scale of droughts. J. Climate, 22, 45204538, doi:10.1175/2009JCLI2841.1.

    • Search Google Scholar
    • Export Citation
  • Wu, W., and Dickinson R. E. , 2005: Warm-season rainfall variability over the U.S. Great Plains and its correlation with evapotranspiration in a climate simulation. Geophys. Res. Lett., 32, L17402, doi:10.1029/2005GL023422.

    • Search Google Scholar
    • Export Citation
  • Xoplaki, E., González-Rouco J. F. , Luterbacher J. , and Wanner H. , 2003: Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Climate Dyn., 20, 723739, doi:10.1007/s00382-003-0304-x.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Beljaars A. , 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605, doi:10.1029/2005GL023030.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 5 5 5

Role of Soil Moisture Feedback in the Development of Extreme Summer Drought and Flood in the United States

View More View Less
  • 1 Department of Civil and Environmental Engineering, and Center for Environmental Science and Engineering, University of Connecticut, Storrs, Connecticut
  • | 2 Department of Civil Engineering and Environmental Science, Loyola Marymount University, Los Angeles, California
Restricted access

Abstract

This study tackles the contribution of soil moisture feedback to the development of extreme summer precipitation anomalies over the conterminous United States using a regional climate model. The model performs well in reproducing both the mean climate and extremes associated with drought and flood. A large set of experiments using the model are conducted that involve swapped initial soil moisture between flood and drought years using the 1988 and 2012 droughts and 1993 flood as examples. The starting time of these experiments includes 1 May (late spring) and 1 June (early summer). For all three years, the impact of 1 May soil moisture swapping is much weaker than the 1 June soil moisture swapping. In 1988 and 2012, replacing the 1 June soil moisture with that from 1993 reduces both the spatial extent and the severity of the simulated summer drought and heat. The impact is especially strong in 2012. In 1993, however, replacing the 1 June soil moisture with that from 1988 has little impact on precipitation. The contribution of soil moisture feedback to summer extremes is larger in 2012 than in 1988 and 1993. This may be because of the presence of strong anomalies in large-scale forcing in 1988 and 1993 that prohibit or favor precipitation, and the lack of such in 2012. This study demonstrates how the contribution of land–atmosphere feedback to the development of seasonal climate anomalies may vary from year to year and highlights its importance in the 2012 drought.

Corresponding author address: Guiling Wang, Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Rd., Storrs, CT 06269-3037. E-mail: gwang@engr.uconn.edu

Abstract

This study tackles the contribution of soil moisture feedback to the development of extreme summer precipitation anomalies over the conterminous United States using a regional climate model. The model performs well in reproducing both the mean climate and extremes associated with drought and flood. A large set of experiments using the model are conducted that involve swapped initial soil moisture between flood and drought years using the 1988 and 2012 droughts and 1993 flood as examples. The starting time of these experiments includes 1 May (late spring) and 1 June (early summer). For all three years, the impact of 1 May soil moisture swapping is much weaker than the 1 June soil moisture swapping. In 1988 and 2012, replacing the 1 June soil moisture with that from 1993 reduces both the spatial extent and the severity of the simulated summer drought and heat. The impact is especially strong in 2012. In 1993, however, replacing the 1 June soil moisture with that from 1988 has little impact on precipitation. The contribution of soil moisture feedback to summer extremes is larger in 2012 than in 1988 and 1993. This may be because of the presence of strong anomalies in large-scale forcing in 1988 and 1993 that prohibit or favor precipitation, and the lack of such in 2012. This study demonstrates how the contribution of land–atmosphere feedback to the development of seasonal climate anomalies may vary from year to year and highlights its importance in the 2012 drought.

Corresponding author address: Guiling Wang, Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Rd., Storrs, CT 06269-3037. E-mail: gwang@engr.uconn.edu
Save