• Bélair, S., Brown R. , Mailhot J. , Bilodeau B. , and Crevier L.-P. , 2003a: Operational implementation of the ISBA land surface scheme in the Canadian Regional Weather Forecast Model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Brown R. , Mailhot J. , Bilodeau B. , and Crevier L.-P. , 2003b: Operational implementation of the ISBA land surface scheme in the Canadian Regional Weather Forecast Model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Roch M. , Leduc A.-M. , Vaillancourt P. A. , Laroche S. , and Mailhot J. , 2009: Medium-range quantitative precipitation forecasts from Canada’s new 33-km deterministic global operational system. Wea. Forecasting, 24, 690708, doi:10.1175/2008WAF2222175.1.

    • Search Google Scholar
    • Export Citation
  • Bernier, N. B., Bélair S. , Bilodeau B. , and Tong L. , 2011: Near-surface and land surface forecast system of the Vancouver 2010 Winter Olympic and Paralympic Games. J. Hydrometeor., 12, 508530, doi:10.1175/2011JHM1250.1.

    • Search Google Scholar
    • Export Citation
  • Boone, A., Calvet J.-C. , and Noilhan J. , 1999: Inclusion of a third soil layer in a land surface scheme using the force–restore method. J. Appl. Meteor., 38, 16111630, doi:10.1175/1520-0450(1999)038<1611:IOATSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17, 187208, doi:10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, R. H., and Corey A. T. , 1966: Properties of porous media affecting fluid flow. J. Irrig. Drain. Amer. Soc. Civil Eng., 2, 6188.

    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., Bélair S. , Fortin V. , Bilodeau B. , Charpentier D. , and Doré I. , 2010: Evaluation of snowpack simulations over the Canadian Rockies with an experimental hydrometeorological modeling system. J. Hydrometeor., 11, 11231140, doi:10.1175/2010JHM1274.1.

    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., Bélair S. , and Bilodeau B. , 2015: The Canadian Land Data Assimilation System (CaLDAS): Description and synthetic evaluation study. J. Hydrometeor., 16, 12931314, doi:10.1175/JHM-D-14-0089.1.

    • Search Google Scholar
    • Export Citation
  • Champagne, C., McNairn H. , and Berg A. A. , 2011: Monitoring agricultural soil moisture extremes in Canada using passive microwave remote sensing. Remote Sens. Environ., 115, 24342444, doi:10.1016/j.rse.2011.04.030.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and Kumar P. , 2001: Topographic influence on the seasonal and interannual variation of water and energy balance of basin in North America. J. Climate, 14, 19892014, doi:10.1175/1520-0442(2001)014<1989:TIOTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clapp, R. B., and Hornberger G. M. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604, doi:10.1029/WR014i004p00601.

    • Search Google Scholar
    • Export Citation
  • Côté, J., Gravel S. , and Méthot A. , 1998: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395, doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deacu, D., Fortin V. , Klyszejko E. , Spence C. , and Blanken P. D. , 2012: Predicting the net basin supply to the Great Lakes with a hydrometeorological model. J. Hydrometeor., 13, 17391759, doi:10.1175/JHM-D-11-0151.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1977: A parametrization of ground surface moisture content for use in atmospheric prediction models. J. Appl. Meteor., 16, 11821185, doi:10.1175/1520-0450(1977)016<1182:APOGSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Douville H. , Boone A. , Habets F. , and Noilhan J. , 2006: Impact of an exponential profile of saturated hydraulic conductivity within the ISBA LSM: Simulations over the Rhône basin. J. Hydrometeor., 7, 6180, doi:10.1175/JHM469.1.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Boone A. , Delire C. , and Noilhan J. , 2011: Local evaluation of the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions. J. Geophys. Res., 116, D20126, doi:10.1029/2011JD016002.

    • Search Google Scholar
    • Export Citation
  • Dekić, L., Mihailović D. T. , and Rajković B. , 1995: A study of the sensitivity of bare soil evaporation schemes to soil surface wetness, using the coupled soil moisture and surface temperature prediction model, BARESOIL. Meteor. Atmos. Phys., 55, 101112, doi:10.1007/BF01029605.

    • Search Google Scholar
    • Export Citation
  • de Lannoy, G. J. M., Koster R. D. , Reichle R. H. , Mahanama S. P. P. , and Liu Q. , 2014: An updated treatment of soil texture and associated hydraulic properties in a global land modeling system. J. Adv. Model. Earth Syst., 6, 957979, doi:10.1002/2014MS000330.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and Coauthors, 2009: AMMA land surface model intercomparison experiment coupled to the Community Microwave Emission Model: ALMIP-MEM. J. Geophys. Res., 114, D05108, doi:10.1029/2008JD010724.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13, 29002922, doi:10.1175/1520-0442(2000)013<2900:UAGSWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., Wood E. F. , and Simmer C. , 1999: Up-scaling effects in passive microwave remote sensing: ESTAR 1.4 GHz measurements during SGP ’97. Geophys. Res. Lett., 26, 879882, doi:10.1029/1999GL900150.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., Holmes T. , de Rosnay P. , and Balsamo G. , 2009: Comparing ERA-40-based L-band brightness temperatures with Skylab observations: A calibration/validation study using the Community Microwave Emission Model. J. Hydrometeor., 10, 213226, doi:10.1175/2008JHM964.1.

    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and Wood E. F. , 1994: Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res., 30, 3061, doi:10.1029/94WR01498.

    • Search Google Scholar
    • Export Citation
  • Fry, L., and Coauthors, 2013: The Great Lakes Runoff Intercomparison Project Phase 1: Lake Michigan (GRIP-M). J. Hydrol., 519, 34483465, doi:10.1016/j.jhydrol.2014.07.021.

    • Search Google Scholar
    • Export Citation
  • Girard, C., and Coauthors, 2014: Staggered vertical discretization of the Canadian environmental multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 11831196, doi:10.1175/MWR-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Hou, D., Kalnay E. , and Droegemeier K. K. , 2001: Objective verification of SAMEX ’98 ensemble forecasts. Mon. Wea. Rev., 129, 7391, doi:10.1175/1520-0493(2001)129<0073:OVOTSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Husain, S. Z., Alavi N. , Bélair S. , Carrera M. , Zhang S. , Fortin V. , Abrahamowicz M. , and Gauthier N. , 2016: The multibudget Soil, Vegetation, and Snow (SVS) scheme for land surface parameterization: Offline warm season evaluation. J. Hydrometeor., doi:10.1175/JHM-D-15-0228.1, in press.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666687, doi:10.1109/JPROC.2010.2043032.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Leroyer, S., Bélair S. , Mailhot J. , and Strachan I. , 2011: Microscale numerical prediction over Montreal with the Canadian external urban modeling system. J. Appl. Meteor. Climatol., 50, 24102428, doi:10.1175/JAMC-D-11-013.1.

    • Search Google Scholar
    • Export Citation
  • Lespinas, F., Fortin V. , Roy G. , Rasmussen P. , and Stadnyk T. , 2015: Performance evaluation of the Canadian Precipitation Analysis (CaPA). J. Hydrometeor., 16, 20452064, doi:10.1175/JHM-D-14-0191.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and Coauthors, 2011: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12, 750765, doi:10.1175/JHM-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., Brasnett B. , and Gagnon S. , 2007: A Canadian Precipitation Analysis (CaPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117, doi:10.3137/ao.v450101.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2006: The 15-km version of the Canadian Regional Forecast system. Atmos.–Ocean, 44, 133149, doi:10.3137/ao.440202.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., and Yang Z. L. , 2003: The versatile integrator for surface atmospheric processes (VISA). Part II: Evaluation of three topography-based runoff schemes. Global Planet. Change, 38, 191208, doi:10.1016/S0921-8181(03)00029-8.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Mahfouf J.-F. , 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13, 145159, doi:10.1016/0921-8181(95)00043-7.

    • Search Google Scholar
    • Export Citation
  • Parrens, M., Calvet J. C. , de Rosnay P. , and Decharme B. , 2014a: Benchmarking of L-band soil microwave emission models. Remote Sens. Environ., 140, 407419, doi:10.1016/j.rse.2013.09.017.

    • Search Google Scholar
    • Export Citation
  • Parrens, M., Mahfouf J.-F. , Barbu A. L. , and Calvet J.-C. , 2014b: Assimilation of surface soil moisture into a multilayer soil model: Design and evaluation at local scale. Hydrol. Earth Syst. Sci., 18, 673689, doi:10.5194/hess-18-673-2014.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., Cosh M. H. , and Jackson T. J. , 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, doi:10.1175/2007JTECHA930.1.

    • Search Google Scholar
    • Export Citation
  • Schenk, H. J., and Jackson R. B. , 2005: Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126, 129140, doi:10.1016/j.geoderma.2004.11.018.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Mintz Y. , Sud Y. C. , and Dalcher A. , 1986: A Simple Biosphere Model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505531, doi:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Separovic, L., Husain S. Z. , Yu W. , and Fernig D. , 2014: High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models. J. Geophys. Res. Atmos., 119, 13 65113 682, doi:10.1002/2014JD022387.

    • Search Google Scholar
    • Export Citation
  • Shangguan, W., Dai Y. , Duan Q. , Liu B. , and Yuan H. , 2014: A global soil data set for earth system modeling. J. Adv. Model. Earth Syst., 6, 249263, doi:10.1002/2013MS000293.

    • Search Google Scholar
    • Export Citation
  • Soulis, E. D., Snelgrove K. R. , Kouwen N. , Seglenieks F. , and Verseghy D. L. , 2000: Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme class with the distributed hydrological model WATFLOOD. Atmos.–Ocean, 38, 251269, doi:10.1080/07055900.2000.9649648.

    • Search Google Scholar
    • Export Citation
  • Soulis, E. D., Craig J. R. , Fortin V. , and Liu G. , 2011: A simple expression for the bulk field capacity of a sloping soil horizon. Hydrol. Processes, 25, 112116, doi:10.1002/hyp.7827.

    • Search Google Scholar
    • Export Citation
  • Takacs, L., 1985: A two-step scheme for the advection equation with minimized dissipation errors. Mon. Wea. Rev., 113, 10501065, doi:10.1175/1520-0493(1985)113<1050:ATSSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: Class—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111133, doi:10.1002/joc.3370110202.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., McFarlane N. A. , and Lazare M. , 1993: Class—A Canadian land surface scheme for GCMS, II. Vegetation model and coupled runs. Int. J. Climatol., 13, 347370, doi:10.1002/joc.3370130402.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., Lettenmaier D. P. , and Zartarian V. G. , 1992: A land-surface hydrology parametrization with subgrid variability for general circulation models. J. Geophys. Res., 97, 27172728, doi:10.1029/91JD01786.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment: 1. Experiment description and summary intercomparisons. Global Planet. Change, 19, 115135, doi:10.1016/S0921-8181(98)00044-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 5 5 5

Warm Season Evaluation of Soil Moisture Prediction in the Soil, Vegetation, and Snow (SVS) Scheme

View More View Less
  • 1 Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada
Restricted access

Abstract

A new land surface scheme has been developed at Environment and Climate Change Canada (ECCC) to provide surface fluxes of momentum, heat, and moisture for the Global Environmental Multiscale (GEM) atmospheric model. In this study, the performance of the Soil, Vegetation, and Snow (SVS) scheme in estimating the surface and root-zone soil moisture is evaluated against the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme currently used operationally at ECCC within GEM for numerical weather prediction. In addition, the sensitivity of SVS soil moisture results to soil texture and vegetation data sources (type and fractional coverage) has been explored. The performance of SVS and ISBA was assessed against a large set of in situ observations as well as the brightness temperature data from the Soil Moisture Ocean Salinity (SMOS) satellite over North America. The results indicate that SVS estimates the time evolution of soil moisture more accurately, and compared to ISBA, results in higher correlations with observations and reduced errors. The sensitivity tests carried out during this study revealed that the SVS soil moisture results are not affected significantly by the soil texture data from different sources. The vegetation data source, however, has a major impact on the soil moisture results predicted by SVS, and accurate specification of vegetation characteristics is therefore crucial for accurate soil moisture prediction.

Denotes Open Access content.

Corresponding author address: Nasim Alavi, Meteorological Research Division, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Dorval, QC H9P 1J3, Canada. E-mail: nasim.alavi@canada.ca

Abstract

A new land surface scheme has been developed at Environment and Climate Change Canada (ECCC) to provide surface fluxes of momentum, heat, and moisture for the Global Environmental Multiscale (GEM) atmospheric model. In this study, the performance of the Soil, Vegetation, and Snow (SVS) scheme in estimating the surface and root-zone soil moisture is evaluated against the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme currently used operationally at ECCC within GEM for numerical weather prediction. In addition, the sensitivity of SVS soil moisture results to soil texture and vegetation data sources (type and fractional coverage) has been explored. The performance of SVS and ISBA was assessed against a large set of in situ observations as well as the brightness temperature data from the Soil Moisture Ocean Salinity (SMOS) satellite over North America. The results indicate that SVS estimates the time evolution of soil moisture more accurately, and compared to ISBA, results in higher correlations with observations and reduced errors. The sensitivity tests carried out during this study revealed that the SVS soil moisture results are not affected significantly by the soil texture data from different sources. The vegetation data source, however, has a major impact on the soil moisture results predicted by SVS, and accurate specification of vegetation characteristics is therefore crucial for accurate soil moisture prediction.

Denotes Open Access content.

Corresponding author address: Nasim Alavi, Meteorological Research Division, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Dorval, QC H9P 1J3, Canada. E-mail: nasim.alavi@canada.ca
Save