• Anagnostou, E. N., Maggioni V. , Nikolopoulos E. I. , Meskele T. , Hossain F. , and Papadopoulos A. , 2010: Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens., 48, 16671683, doi:10.1109/TGRS.2009.2034736.

    • Search Google Scholar
    • Export Citation
  • Ayalew, T. B., Krajewski W. F. , and Mantilla R. , 2013: Exploring the effect of reservoir storage on peak discharge frequency. J. Hydrol. Eng., 18, 16971708, doi:10.1061/(ASCE)HE.1943-5584.0000721.

    • Search Google Scholar
    • Export Citation
  • Ayalew, T. B., Krajewski W. F. , Mantilla R. , and Small S. J. , 2014: Exploring the effects of hillslope–channel link dynamics and excess rainfall properties on the scaling structure of peak-discharge. Adv. Water Resour., 64, 920, doi:10.1016/j.advwatres.2013.11.010.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Khakbaz B. , Jaw T. C. , AghaKouchak A. , Hsu K. , and Sorooshian S. , 2011: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 397, 225237, doi:10.1016/j.jhydrol.2010.11.043.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., and Gebremichael M. , 2011: Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res., 47, 111, doi:10.1029/2010WR009917.

    • Search Google Scholar
    • Export Citation
  • Casse, C., Gosset M. , Peugeot C. , Pedinotti V. , Boone A. , Tanimoun B. , and Decharme B. , 2015: Potential of satellite rainfall products to predict Niger River flood events in Niamey. Atmos. Res., 163, 162176, doi:10.1016/j.atmosres.2015.01.010.

    • Search Google Scholar
    • Export Citation
  • Chintalapudi, S., Sharif H. , and Xie H. , 2014: Sensitivity of distributed hydrologic simulations to ground and satellite based rainfall products. Water, 6, 12211245, doi:10.3390/w6051221.

    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., Mandapaka P. V. , Krajewski W. F. , Mantilla R. , and Bradley A. A. , 2012: Impact of radar-rainfall error structure on estimated flood magnitude across scales: An investigation based on a parsimonious distributed hydrological model. Water Resour. Res., 48, W10515, doi:10.1029/2012WR012138.

    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., Smith J. A. , Krajewski W. F. , Baeck M. L. , and Seo B.-C. , 2015: NEXRAD NWS polarimetric precipitation product evaluation for IFloodS. J. Hydrometeor., 16, 16761699, doi:10.1175/JHM-D-14-0148.1.

    • Search Google Scholar
    • Export Citation
  • Delrieu, G., Bonnifait L. , Kirstetter P.-E. , and Boudevillain B. , 2014: Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrol. Sci. J., 59, 13081319, doi:10.1080/02626667.2013.827337.

    • Search Google Scholar
    • Export Citation
  • Demaria, E. M. C., Nijssen B. , Valdés J. B. , Rodriguez D. A. , and Su F. , 2014: Satellite precipitation in southeastern South America: How do sampling errors impact high flow simulations? Int. J. River Basin Manage., 12, 113, doi:10.1080/15715124.2013.865637.

    • Search Google Scholar
    • Export Citation
  • Demir, I., and Krajewski W. F. , 2013: Towards an integrated Flood Information System: Centralized data access, analysis, and visualization. Environ. Modell. Software, 50, 7784, doi:10.1016/j.envsoft.2013.08.009.

    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and Hossain F. , 2014: Estimation of satellite rainfall error variance using readily available geophysical features. IEEE Trans. Geosci. Remote Sens., 52, 288304, doi:10.1109/TGRS.2013.2238636.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and Krajewski W. F. , 2004: Assessment of the statistical characterization of small-scale rainfall variability from radar: Analysis of TRMM ground validation datasets. J. Appl. Meteor., 43, 11801199, doi:10.1175/1520-0450(2004)043<1180:AOTSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and Hossain F. , Eds., 2010: Satellite Rainfall Applications for Surface Hydrology. Springer, 327 pp.

  • Gourley, J. J., Hong Y. , Flamig Z. L. , Wang J. , Vergara H. , and Anagnostou E. N. , 2011: Hydrologic evaluation of rainfall estimates from radar, satellite, gauge, and combinations on Ft. Cobb basin, Oklahoma. J. Hydrometeor., 12, 973988, doi:10.1175/2011JHM1287.1.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Haile A. T. , Tian Y. , and Joyce R. J. , 2012: Evaluation of the high-resolution CMORPH satellite rainfall product using dense rain gauge observations and radar-based estimates. J. Hydrometeor., 13, 17841798, doi:10.1175/JHM-D-12-017.1.

    • Search Google Scholar
    • Export Citation
  • Harris, A., and Hossain F. , 2008: Investigating the optimal configuration of conceptual hydrologic models for satellite-rainfall-based flood prediction. IEEE Geosci. Remote Sens. Lett., 5, 532536, doi:10.1109/LGRS.2008.922551.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Anagnostou E. N. , 2006: Assessment of a multidimensional satellite rainfall error model for ensemble generation of satellite rainfall data. IEEE Geosci. Remote Sens. Lett., 3, 419423, doi:10.1109/LGRS.2006.873686.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Nelkin E. J. , 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, doi:10.1007/978-90-481-2915-7_1.

  • Jiang, S., Ren L. , Hong Y. , Yong B. , Yang X. , Yuan F. , and Ma M. , 2012: Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol., 452453, 213225, doi:10.1016/j.jhydrol.2012.05.055.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and Levizzani V. , 2010: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. Discuss., 7, 81578177, doi:10.5194/hessd-7-8157-2010.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Hong Y. , Gourley J. J. , Cao Q. , Schwaller M. , and Petersen W. , 2014: Research framework to bridge from the Global Precipitation Measurement Mission core satellite to the constellation sensors using ground-radar-based national mosaic QPE. Remote Sensing of the Terrestrial Water Cycle, V. Lakshmi et al., Eds., Wiley, 61–79, doi:10.1002/9781118872086.ch4.

  • Knoche, M., Fischer C. , Pohl E. , Krause P. , and Merz R. , 2014: Combined uncertainty of hydrological model complexity and satellite-based forcing data evaluated in two data-scarce semi-arid catchments in Ethiopia. J. Hydrol., 519, 20492066, doi:10.1016/j.jhydrol.2014.10.003.

    • Search Google Scholar
    • Export Citation
  • Kucera, P., and Lapeta B. , 2014: Leading efforts to improve global quantitative precipitation estimation. Bull. Amer. Meteor. Soc., 95, ES26ES29, doi:10.1175/BAMS-D-13-00078.1.

    • Search Google Scholar
    • Export Citation
  • Lee, K.-H., and Anagnostou E. N. , 2004: Investigation of the nonlinear hydrologic response to precipitation forcing in physically based land surface modeling. Can. J. Rem. Sens., 30, 706716, doi:10.5589/m04-037.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Yang D. , Gao B. , Jiao Y. , Hong Y. , and Xu T. , 2015: Multiscale hydrologic applications of the latest satellite precipitation products in the Yangtze River basin using a distributed hydrologic model. J. Hydrometeor., 16, 407426, doi:10.1175/JHM-D-14-0105.1.

    • Search Google Scholar
    • Export Citation
  • Lo Conti, F., Hsu K.-L. , Noto L. V. , and Sorooshian S. , 2014: Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmos. Res., 138, 189204, doi:10.1016/j.atmosres.2013.11.011.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., Reichle R. H. , and Anagnostou E. N. , 2011: The effect of satellite rainfall error modeling on soil moisture prediction uncertainty. J. Hydrometeor., 12, 413428, doi:10.1175/2011JHM1355.1.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., Vergara H. J. , Anagnostou E. N. , Gourley J. J. , Hong Y. , and Stampoulis D. , 2013: Investigating the applicability of error correction ensembles of satellite rainfall products in river flow simulations. J. Hydrometeor., 14, 11941211, doi:10.1175/JHM-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., Sapiano M. R. P. , Adler R. F. , Tian Y. , and Huffman G. J. , 2014: An error model for uncertainty quantification in high-time-resolution precipitation products. J. Hydrometeor., 15, 12741292, doi:10.1175/JHM-D-13-0112.1.

    • Search Google Scholar
    • Export Citation
  • Mandapaka, P. V., Krajewski W. F. , Mantilla R. , and Gupta V. K. , 2009: Dissecting the effect of rainfall variability on the statistical structure of peak flows. Adv. Water Resour., 32, 15081525, doi:10.1016/j.advwatres.2009.07.005.

    • Search Google Scholar
    • Export Citation
  • Mantilla, R., and Gupta V. K. , 2005: A GIS numerical framework to study the process basis of scaling statistics in river networks. IEEE Geosci. Remote Sens. Lett., 2, 404408, doi:10.1109/LGRS.2005.853571.

    • Search Google Scholar
    • Export Citation
  • Mehran, A., and AghaKouchak A. , 2014: Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Processes, 28, 22622270, doi:10.1002/hyp.9779.

    • Search Google Scholar
    • Export Citation
  • Moazami, S., Golian S. , Kavianpour M. R. , and Hong Y. , 2014: Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmos. Res., 137, 145166, doi:10.1016/j.atmosres.2013.08.016.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., Anagnostou E. N. , Hossain F. , Gebremichael M. , and Borga M. , 2010: Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model. J. Hydrometeor., 11, 520532, doi:10.1175/2009JHM1169.1.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., Anagnostou E. N. , and Borga M. , 2013: Using high-resolution satellite rainfall products to simulate a major flash flood event in northern Italy. J. Hydrometeor., 14, 171185, doi:10.1175/JHM-D-12-09.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., Krajewski W. , 2013: Status update on the GPM ground validation Iowa Flood Studies (IFloodS) field experiment. Geophysical Research Abstracts, Vol. 15, Abstract EGU2013-13345. [Available online at http://meetingorganizer.copernicus.org/EGU2013/EGU2013-13345.pdf.]

  • Qu, J. J., and Powell A. M. , 2013: Satellite-Based Applications on Climate Change. J. Qu, A. Powell, and M. V. K. Sivakumar, Eds., Springer, 371 pp.

  • Reed, S. M., and Maidment D. R. , 1999: Coordinate transformations for using NEXRAD data in GIS-based hydrologic modeling. J. Hydrol. Eng., 4, 174182, doi:10.1061/(ASCE)1084-0699(1999)4:2(174).

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., and Rinaldo A. , 2001: Fractal River Basins: Chance and Self-Organization. Rev. ed. Cambridge University Press, 570 pp.

  • Seo, B.-C., and Krajewski W. F. , 2010: Scale dependence of radar rainfall uncertainty: Initial evaluation of NEXRAD’s new super-resolution data for hydrologic applications. J. Hydrometeor., 11, 11911198, doi:10.1175/2010JHM1265.1.

    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., Krajewski W. F. , and Villarini G. , 2012: Rain gauge data quality control and combining data from different networks for hydrologic applications. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H41I-1278.

  • Seo, B.-C., Dolan B. , Krajewski W. F. , Rutledge S. A. , and Petersen W. , 2015: Comparison of single and dual polarization based rainfall estimates using NEXRAD data for the NASA Iowa Flood Studies project. J. Hydrometeor., 16, 16581675, doi:10.1175/JHM-D-14-0169.1.

    • Search Google Scholar
    • Export Citation
  • Serpetzoglou, E., Anagnostou E. N. , Papadopoulos A. , Nikolopoulos E. I. , and Maggioni V. , 2010: Error propagation of remote sensing rainfall estimates in soil moisture prediction from a land surface model. J. Hydrometeor., 11, 705720, doi:10.1175/2009JHM1166.1.

    • Search Google Scholar
    • Export Citation
  • Small, S. J., Jay L. O. , Mantilla R. , Curtu R. , Cunha L. K. , Fonley M. , and Krajewski W. F. , 2013: An asynchronous solver for systems of ODEs linked by a directed tree structure. Adv. Water Resour., 53, 2332, doi:10.1016/j.advwatres.2012.10.011.

    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., and Anagnostou E. N. , 2012: Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeor., 13, 588603, doi:10.1175/JHM-D-11-086.1.

    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., Anagnostou E. N. , and Nikolopoulos E. I. , 2013: Assessment of high-resolution satellite-based rainfall estimates over the Mediterranean during heavy precipitation events. J. Hydrometeor., 14, 15001514, doi:10.1175/JHM-D-12-0167.1.

    • Search Google Scholar
    • Export Citation
  • Thiemig, V., Rojas R. , Zambrano-Bigiarini M. , and De Roo A. , 2013: Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo basin. J. Hydrol., 499, 324338, doi:10.1016/j.jhydrol.2013.07.012.

    • Search Google Scholar
    • Export Citation
  • Tong, K., Su F. , Yang D. , and Hao Z. , 2014: Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol., 519, 423437, doi:10.1016/j.jhydrol.2014.07.044.

    • Search Google Scholar
    • Export Citation
  • Vergara, H., Hong Y. , Gourley J. J. , Anagnostou E. N. , Maggioni V. , Stampoulis D. , and Kirstetter P.-E. , 2014: Effects of resolution of satellite-based rainfall estimates on hydrologic modeling skill at different scales. J. Hydrometeor., 15, 593613, doi:10.1175/JHM-D-12-0113.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Krajewski W. F. , 2007: Evaluation of the research version TMPA three-hourly 0.25° × 0.25° rainfall estimates over Oklahoma. Geophys. Res. Lett., 34, L05402, doi:10.1029/2006GL029147.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Krajewski W. F. , 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129, doi:10.1007/s10712-009-9079-x.

    • Search Google Scholar
    • Export Citation
  • Worqlul, A. W., Collick A. S. , Tilahun S. A. , Langan S. , Rientjes T. H. M. , and Steenhuis T. S. , 2015: Comparing TRMM 3B42, CFSR and ground-based rainfall estimates as input for hydrological models, in data scarce regions: The Upper Blue Nile basin, Ethiopia. Hydrol. Earth Syst. Sci. Discuss., 12, 20812112, doi:10.5194/hessd-12-2081-2015.

    • Search Google Scholar
    • Export Citation
  • Wu, H., Adler R. F. , Hong Y. , Tian Y. , and Policelli F. , 2012: Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeor., 13, 12681284, doi:10.1175/JHM-D-11-087.1.

    • Search Google Scholar
    • Export Citation
  • Wu, H., Adler R. F. , Tian Y. , Huffman G. J. , Li H. , and Wang J. , 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 26932717, doi:10.1002/2013WR014710.

    • Search Google Scholar
    • Export Citation
  • Young, M. P., Williams C. J. R. , Chiu J. C. , Maidment R. I. , and Chen S.-H. , 2014: Investigation of discrepancies in satellite rainfall estimates over Ethiopia. J. Hydrometeor., 15, 23472369, doi:10.1175/JHM-D-13-0111.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., Yang S. , Wang Z. , Zhou X. , Luo Y. , and Wu L. , 2015: Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China. J. Geogr. Sci., 25, 177195, doi:10.1007/s11442-015-1161-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 16
PDF Downloads 9 9 9

A Spatial–Dynamical Framework for Evaluation of Satellite Rainfall Products for Flood Prediction

View More View Less
  • 1 Iowa Flood Center, The University of Iowa, Iowa City, Iowa
Restricted access

Abstract

Rainfall maps that are derived from satellite observations provide hydrologists with an unprecedented opportunity to forecast floods globally. However, the limitations of using these precipitation estimates with respect to producing reliable flood forecasts at multiple scales are not well understood. To address the scientific and practical question of applicability of space-based rainfall products for global flood forecasting, a data evaluation framework is developed that allows tracking the rainfall effects in space and time across scales in the river network. This provides insights on the effects of rainfall product resolution and uncertainty. Obtaining such insights is not possible when the hydrologic evaluation is based on discharge observations from single gauges. The proposed framework also explores the ability of hydrologic model structure to answer questions pertaining to the utility of space-based rainfall observations for flood forecasting. To illustrate the framework, hydrometeorological data collected during the Iowa Flood Studies (IFloodS) campaign in Iowa are used to perform a hydrologic simulation using two different rainfall–runoff model structures and three rainfall products, two of which are radar based [stage IV and Iowa Flood Center (IFC)] and one satellite based [TMPA–Research Version (RV)]. This allows for exploring the differences in rainfall estimates at several spatial and temporal scales and provides improved understanding of how these differences affect flood predictions at multiple basin scales. The framework allows for exploring the differences in peak flow estimation due to nonlinearities in the hydrologic model structure and determining how these differences behave with an increase in the upstream area through the drainage network. The framework provides an alternative evaluation of precipitation estimates, based on the diagnostics of hydrological model results.

Corresponding author address: Felipe Quintero, Iowa Flood Center, The University of Iowa, Maxwell Stanley Hydraulics Lab 135, Iowa City, IA 52242. E-mail: felipe-quintero@uiowa.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Abstract

Rainfall maps that are derived from satellite observations provide hydrologists with an unprecedented opportunity to forecast floods globally. However, the limitations of using these precipitation estimates with respect to producing reliable flood forecasts at multiple scales are not well understood. To address the scientific and practical question of applicability of space-based rainfall products for global flood forecasting, a data evaluation framework is developed that allows tracking the rainfall effects in space and time across scales in the river network. This provides insights on the effects of rainfall product resolution and uncertainty. Obtaining such insights is not possible when the hydrologic evaluation is based on discharge observations from single gauges. The proposed framework also explores the ability of hydrologic model structure to answer questions pertaining to the utility of space-based rainfall observations for flood forecasting. To illustrate the framework, hydrometeorological data collected during the Iowa Flood Studies (IFloodS) campaign in Iowa are used to perform a hydrologic simulation using two different rainfall–runoff model structures and three rainfall products, two of which are radar based [stage IV and Iowa Flood Center (IFC)] and one satellite based [TMPA–Research Version (RV)]. This allows for exploring the differences in rainfall estimates at several spatial and temporal scales and provides improved understanding of how these differences affect flood predictions at multiple basin scales. The framework allows for exploring the differences in peak flow estimation due to nonlinearities in the hydrologic model structure and determining how these differences behave with an increase in the upstream area through the drainage network. The framework provides an alternative evaluation of precipitation estimates, based on the diagnostics of hydrological model results.

Corresponding author address: Felipe Quintero, Iowa Flood Center, The University of Iowa, Maxwell Stanley Hydraulics Lab 135, Iowa City, IA 52242. E-mail: felipe-quintero@uiowa.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Save