• Angel, J. R., and Kunkel K. E. , 2010: The response of Great Lakes water levels to future climate scenarios with an emphasis on Lake Michigan–Huron. J. Great Lakes Res., 36, 5158, doi:10.1016/j.jglr.2009.09.006.

    • Search Google Scholar
    • Export Citation
  • Brean, H., 2015: Climate change will increase evaporation of Colorado River. Las Vegas Review-Journal, 6 February, accessed 12 May 2015. [Available online at http://www.reviewjournal.com/news/water-environment/climate-change-will-increase-evaporation-colorado-river.]

  • Chao, P., 1999: Great Lakes water resources: Climate change impact analysis with transient GCM scenarios. J. Amer. Water Resour. Assoc., 35, 14991507, doi:10.1111/j.1752-1688.1999.tb04233.x.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Search Google Scholar
    • Export Citation
  • Croley, T. E., II, 1983: Great Lakes basins (U.S.A.–Canada) runoff modeling. J. Hydrol., 64, 135158, doi:10.1016/0022-1694(83)90065-3.

    • Search Google Scholar
    • Export Citation
  • Croley, T. E., II, 1989: Verifiable evaporation modeling on the Laurentian Great Lakes. Water Resour. Res., 25, 781792, doi:10.1029/WR025i005p00781.

    • Search Google Scholar
    • Export Citation
  • Croley, T. E., II, 1990: Laurentian Great Lakes double-CO2 climate change hydrological impacts. Climatic Change, 17, 2747, doi:10.1007/BF00148999.

    • Search Google Scholar
    • Export Citation
  • Croley, T. E., II, and Hartmann H. C. , 1984: Lake Superior basin runoff modeling. NOAA Tech. Memo. ERL GLERL-50, 284 pp. [Available online at http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-050/tm-050.pdf.]

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Henderson-Sellers A. , Kennedy P. J. , and Wilson M. F. , 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 72 pp., doi:10.5065/D6668B58.

  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., Peltier W. R. , Erler A. R. , and Gula J. , 2014: Climate change impacts on Great Lakes basin precipitation extremes. J. Geophys. Res. Atmos., 119, 10 79910 812, doi:10.1002/2014JD021855.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2013: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26, 22472267, doi:10.1175/JCLI-D-12-00150.1.

    • Search Google Scholar
    • Export Citation
  • Fry, L. M., and Coauthors, 2014: The Great Lakes Runoff Intercomparison Project Phase 1: Lake Michigan (GRIP-M). J. Hydrol., 519, 34483465, doi:10.1016/j.jhydrol.2014.07.021.

    • Search Google Scholar
    • Export Citation
  • Government of Canada and U.S. EPA, 1995: The Great Lakes: An Environmental Atlas and Resource Book. 3rd ed. Tech. Rep. EPA 905-B-95-001, 46 pp.

  • Great Lakes Regional Assessment Group, 2000: Preparing for a changing climate: The potential consequences of climate variability and change—Great Lakes overview. P. Sousounis and J. Bisanz, Eds., Rep. for the U.S. Global Change Research Program, University of Michigan, 106 pp. [Available online at http://geo.msu.edu/extra/glra/PDF_files/GLRA_report.pdf.]

  • Gronewold, A. D., Clites A. H. , Hunter T. S. , and Stow C. A. , 2011: An appraisal of the Great Lakes Advanced Hydrologic Prediction System. J. Great Lakes Res., 37, 577583, doi:10.1016/j.jglr.2011.06.010.

    • Search Google Scholar
    • Export Citation
  • Hamon, W. R., 1961: Estimating potential evapotranspiration. Proc. Amer. Soc. Civ. Eng., 87, 107120.

  • Hartmann, H. C., 1990: Climate change impacts on Laurentian Great Lakes levels. Climatic Change, 17, 4967, doi:10.1007/BF00149000.

  • Hayhoe, K., VanDorn J. , Croley T. II, Schlegal N. , and Wuebbles D. , 2010: Regional climate change projections for Chicago and the Great Lakes. J. Great Lakes Res., 36, 721, doi:10.1016/j.jglr.2010.03.012.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Soden B. J. , 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., Dai A. , Roderick M. L. , and Farquhar G. D. , 2008: Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys. Res. Lett., 35, L12403, doi:10.1029/2008GL033840.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • International Lake Ontario–St. Lawrence River Study Board, 2006: Options for managing Lake Ontario and St. Lawrence River water levels and flows. Final Rep. to the International Joint Commission, 262 pp. [Available online at http://www.ijc.org/loslr/en/library/LOSLR%20Study%20Reports/report-main-e-6KB.pdf.]

  • Kling, G. W., and Coauthors, 2003: Confronting climate change in the Great Lakes Region: Impacts on our communities and ecosystems. Rep. of the Union of Concerned Scientists and Ecological Society of America, 92 pp. [Available online at http://www.ucsusa.org/sites/default/files/legacy/assets/documents/global_warming/greatlakes_final.pdf.]

  • Kutzbach, J. E., Williams J. W. , and Vavrus S. J. , 2005: Simulated 21st century changes in regional water balance of the Great Lakes region and links to changes in global temperature and poleward moisture transport. Geophys. Res. Lett., 32, L17707, doi:10.1029/2005GL023506.

    • Search Google Scholar
    • Export Citation
  • Lide, D. R., Ed., 2005: CRC Handbook of Chemistry and Physics. 86th ed. CRC Press, 2712 pp.

  • Lofgren, B. M., 2014: Simulation of atmospheric and lake conditions of the Laurentian Great Lakes region using the Coupled Hydrosphere–Atmosphere Research Model (CHARM). NOAA Tech. Memo. GLERL-165, 23 pp. [Available online at http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-165/tm-165.pdf.]

  • Lofgren, B. M., and Rouhana J. , 2016: Reaffirmation of large biases in a long-used method for projecting changes in Great Lakes water levels in climate change scenarios. NOAA Tech. Memo. GLERL-167, 29 pp. [Available online at http://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-167/tm-167.pdf.]

  • Lofgren, B. M., Quinn F. H. , Clites A. H. , Assel R. A. , Eberhardt A. J. , and Luukkonen C. L. , 2002: Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs. J. Great Lakes Res., 28, 537554, doi:10.1016/S0380-1330(02)70604-7.

    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., Hunter T. A. , and Wilbarger J. , 2011: Effects of using air temperature as a proxy for potential evapotranspiration in climate change scenarios of Great Lakes basin hydrology. J. Great Lakes Res., 37, 744752, doi:10.1016/j.jglr.2011.09.006.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and DeWeaver E. T. , 2007: The response of the extratropical hydrological cycle to global warming. J. Climate, 20, 34703484, doi:10.1175/JCLI4192.1.

    • Search Google Scholar
    • Export Citation
  • MacKay, M., and Seglenieks F. , 2013: On the simulation of Laurentian Great Lakes water levels under projections of global climate change. Climatic Change, 117, 5567, doi:10.1007/s10584-012-0560-z.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and Holloway J. L. , 1975: The seasonal variation of the hydrologic cycle as simulated by a global model of the atmosphere. J. Geophys. Res., 80, 16171649, doi:10.1029/JC080i012p01617.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., Wetherald R. T. , Milly P. C. D. , Delworth T. L. , and Stouffer R. J. , 2004: Century-scale change in water availability: CO2-quadrupling experiment. Climatic Change, 64, 5976, doi:10.1023/B:CLIM.0000024674.37725.ca.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Search Google Scholar
    • Export Citation
  • McAfee, S. A., 2013: Methodological differences in projected potential evapotranspiration. Climatic Change, 120, 915930, doi:10.1007/s10584-013-0864-7.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Dunne K. A. , and Vecchia A. V. , 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350, doi:10.1038/nature04312.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1973: Principles of Environmental Physics. Edward Arnold, 241 pp.

  • Morton, F. I., 1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66, 176, doi:10.1016/0022-1694(83)90177-4.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Bennington V. , and Lofgren B. , 2015: Dynamical downscaling–based projections of Great Lakes water levels. J. Climate, 28, 97219745, doi:10.1175/JCLI-D-14-00847.1.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., Scavia D. , Downer C. , Gaden M. , Iverson L. , Nordstrom R. , Patz J. , and Robertson G. P. , 2014: Midwest. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 418–440, doi:10.7930/J0KS6PHH.

  • Rotstayn, L. D., Jeffrey S. J. , Collier M. A. , Dravitzki S. M. , Hirst A. D. , Syktus J. I. , and Wong K. K. , 2012: Aerosol- and greenhouse gas–induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos. Chem. Phys., 12, 63776404, doi:10.5194/acp-12-6377-2012.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., and Frierson D. M. W. , 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, doi:10.1175/JCLI-D-13-00233.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, S. B., and Riha S. J. , 2011: Assessing temperature-based PET equations under a changing climate in temperate, deciduous forests. Hydrol. Processes, 25, 14661478, doi:10.1002/hyp.7913.

    • Search Google Scholar
    • Export Citation
  • Smith, J. B., and Tirpak D. , Eds., 1989: The potential effects of global climate change on the United States. Rep. EPA-230-05-89-050, U.S. EPA, 413 pp.

  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 5594, doi:10.2307/210739.

  • Tolson, B., 2009: Rationalizing the decline in Lake Michigan–Huron water levels using the Coordinated Great Lakes Routing and Regulation Model. Final Rep., 35 pp. [Available at http://iugls.org/DocStore/ProjectArchive/HCL_Hydroclimate/HCL08_Tolson_RationalizingDeclineMHLevelsWithCGLRRM/Reports/HCL08-R1_Tolson.pdf.]

  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Walsh, J., and Coauthors, 2014: Appendix 3: Climate Science Supplement. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, G. W. Yohe, Eds., U.S. Global Change Research Program, 735–789, doi:10.7930/J0KS6PHH.

  • Weart, S., 2015: Climate change impacts: The growth of understanding. Phys. Today, 68, 4652, doi:10.1063/PT.3.2914.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 1 1 1

Physically Plausible Methods for Projecting Changes in Great Lakes Water Levels under Climate Change Scenarios

View More View Less
  • 1 NOAA/Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan
Restricted access

Abstract

A method for projecting the water levels of the Laurentian Great Lakes under scenarios of human-caused climate change, used almost to the exclusion of other methods in the past, relies very heavily on the large basin runoff model (LBRM) as a component for determining the water budget for the lake system. This model uses near-surface air temperature as a primary predictor of evapotranspiration (ET); as in previous published work, it is shown here that the model’s very high sensitivity to temperature causes it to overestimate ET in a way that is greatly at variance with the fundamental principle of conservation of energy at the land surface. The traditional formulation is characterized here as being equivalent to having several suns in the virtual sky created by LBRM. More physically based methods show, relative to the traditional method, often astoundingly less potential ET and less ET, more runoff from the land and net basin supply for the lake basins, and higher lake water levels in the future. Using various methods of estimating the statistical significance, it is found that, at minimum, these discrepancies in results are significant at the 99.998% level. The lesson for the larger climate impact community is to use caution about whether an impact is forced directly by air temperature itself or is significantly forced by season or latitude independently of temperature. The results here apply only to the water levels of the Great Lakes and the hydrology of its basin and do not affect larger questions of climate change.

Current affiliation: University of Notre Dame, South Bend, Indiana.

Great Lakes Environmental Research Laboratory Contribution Number 1826.

Corresponding author address: Brent M. Lofgren, NOAA/Great Lakes Environmental Research Laboratory, 4840 S. State Rd., Ann Arbor, MI 48108-9719. E-mail: brent.lofgren@noaa.gov

Abstract

A method for projecting the water levels of the Laurentian Great Lakes under scenarios of human-caused climate change, used almost to the exclusion of other methods in the past, relies very heavily on the large basin runoff model (LBRM) as a component for determining the water budget for the lake system. This model uses near-surface air temperature as a primary predictor of evapotranspiration (ET); as in previous published work, it is shown here that the model’s very high sensitivity to temperature causes it to overestimate ET in a way that is greatly at variance with the fundamental principle of conservation of energy at the land surface. The traditional formulation is characterized here as being equivalent to having several suns in the virtual sky created by LBRM. More physically based methods show, relative to the traditional method, often astoundingly less potential ET and less ET, more runoff from the land and net basin supply for the lake basins, and higher lake water levels in the future. Using various methods of estimating the statistical significance, it is found that, at minimum, these discrepancies in results are significant at the 99.998% level. The lesson for the larger climate impact community is to use caution about whether an impact is forced directly by air temperature itself or is significantly forced by season or latitude independently of temperature. The results here apply only to the water levels of the Great Lakes and the hydrology of its basin and do not affect larger questions of climate change.

Current affiliation: University of Notre Dame, South Bend, Indiana.

Great Lakes Environmental Research Laboratory Contribution Number 1826.

Corresponding author address: Brent M. Lofgren, NOAA/Great Lakes Environmental Research Laboratory, 4840 S. State Rd., Ann Arbor, MI 48108-9719. E-mail: brent.lofgren@noaa.gov
Save