• Andreas, E. L, 1986: A new method of measuring the snow-surface temperature. Cold Reg. Sci. Technol., 12, 139156, doi:10.1016/0165-232X(86)90029-7.

    • Search Google Scholar
    • Export Citation
  • Armstrong, R. L., and Brun E. , Eds., 2008: Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling. Cambridge University Press, 222 pp.

  • Bartelt, P., and Lehning M. , 2002: A physical SNOWPACK model for the Swiss avalanche warning. Part I: Numerical model. Cold Reg. Sci. Technol., 35, 123145, doi:10.1016/S0165-232X(02)00074-5.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description. Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Brun, E., Martin E. , Simon V. , Gendre C. , and Coleau C. , 1989: An energy and mass balance model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35, 333342.

    • Search Google Scholar
    • Export Citation
  • Brun, E., David P. , Sudul M. , and Brunot G. , 1992: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38, 1322.

    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20, 15271532, doi:10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dang, C., Brandt R. E. , and Warren S. G. , 2015: Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon. J. Geophys. Res. Atmos., 120, 54465468, doi:10.1002/2014JD022646.

    • Search Google Scholar
    • Export Citation
  • Douville, H., Royer J.-F. , and Mahfouf J.-F. , 1995: A new snow parameterization for the Météo-France climate model. Climate Dyn., 12, 2135, doi:10.1007/BF00208760.

    • Search Google Scholar
    • Export Citation
  • Dozier, J., and Warren S. G. , 1982: Effect of viewing angle on the infrared brightness temperature of snow. Water Resour. Res., 18, 14241434, doi:10.1029/WR018i005p01424.

    • Search Google Scholar
    • Export Citation
  • Ellis, C. R., Pomeroy J. W. , Brown T. , and MacDonald J. , 2010: Simulation of snow accumulation and melt in needleleaf forest environments. Hydrol. Earth Syst. Sci., 14, 925940, doi:10.5194/hess-14-925-2010.

    • Search Google Scholar
    • Export Citation
  • Essery, R., Morin S. , Lejeune Y. , and Ménard C. B. , 2013: A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour., 55, 131148, doi:10.1016/j.advwatres.2012.07.013.

    • Search Google Scholar
    • Export Citation
  • Fierz, C., Riber P. , Adams E. E. , Curran A. R. , Föhn P. M. B. , Lehning M. , and Plüss C. , 2003: Evaluation of snow-surface energy balance models in alpine terrain. J. Hydrol., 282, 7694, doi:10.1016/S0022-1694(03)00255-5.

    • Search Google Scholar
    • Export Citation
  • Gray, D. M., and Landine P. G. , 1988: An energy-budget snowmelt model for the Canadian Prairies. Can. J. Earth Sci., 25, 12921303, doi:10.1139/e88-124.

    • Search Google Scholar
    • Export Citation
  • Hachikubo, A., and Akitaya E. , 1997: Effect of wind on surface hoar growth on snow. J. Geophys. Res., 102, 43674373, doi:10.1029/96JD03456.

    • Search Google Scholar
    • Export Citation
  • Helgason, W. D., and Pomeroy J. W. , 2005: Uncertainties in estimating turbulent fluxes to melting snow in a mountain clearing. Proc. 62nd Eastern Snow Conf., Waterloo, ON, Canada, Eastern Snow Conference, 129–142. [Available online at http://www.easternsnow.org/proceedings/2005/helgason.pdf.]

  • Helgason, W. D., and Pomeroy J. W. , 2012a: Characteristics of the near-surface boundary layer within a mountain valley during winter. J. Appl. Meteor. Climatol., 51, 583597, doi:10.1175/JAMC-D-11-058.1.

    • Search Google Scholar
    • Export Citation
  • Helgason, W. D., and Pomeroy J. W. , 2012b: Problems closing the energy balance over a homogeneous snow cover during midwinter. J. Hydrometeor., 13, 557572, doi:10.1175/JHM-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Hori, M., and Coauthors, 2006: In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window. Remote Sens. Environ., 100, 486502, doi:10.1016/j.rse.2005.11.001.

    • Search Google Scholar
    • Export Citation
  • Jordan, R. E., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTERERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

  • King, J., Pomeroy J. W. , Gray D. M. , Fierz C. , Föhn P. , and Coauthors, 2008: Snow–atmosphere energy and mass balance. Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, R. L. Armstrong and E. Brun, Eds., Cambridge University Press, 70–124.

  • Koh, G., and Jordan R. , 1995: Sub-surface melting in a seasonal snow cover. J. Glaciol., 41, 474482.

  • Kondo, J., and Yamazaki T. , 1990: A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance method. J. Appl. Meteor., 29, 375384, doi:10.1175/1520-0450(1990)029<0375:APMFSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lehning, M., Bartelt P. , Brown R. L. , and Fierz C. , 2002: A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation. Cold Reg. Sci. Technol., 35, 169184, doi:10.1016/S0165-232X(02)00072-1.

    • Search Google Scholar
    • Export Citation
  • Luce, C. H., and Tarboton D. G. , 2010: Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations. Hydrol. Earth Syst. Sci., 14, 535543, doi:10.5194/hess-14-535-2010.

    • Search Google Scholar
    • Export Citation
  • Marks, D., and Dozier J. , 1992: Climate and energy exchange at the snow surface in the Alpine region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 30433054, doi:10.1029/92WR01483.

    • Search Google Scholar
    • Export Citation
  • Marks, D., Domingo J. , Susong D. , Link T. , and Garen D. , 1999: A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrol. Processes, 13, 19351959, doi:10.1002/(SICI)1099-1085(199909)13:12/13<1935::AID-HYP868>3.0.CO;2-C.

    • Search Google Scholar
    • Export Citation
  • Marks, D., Winstral A. , Flerchinger G. , Reba M. , Pomeroy J. , Link T. , and Elder K. , 2008: Comparing simulated and measured sensible and latent heat fluxes over snow under a pine canopy to improve an energy balance snowmelt model. J. Hydrometeor., 9, 15061522, doi:10.1175/2008JHM874.1.

    • Search Google Scholar
    • Export Citation
  • Marsh, P., and Pomeroy J. W. , 1996: Meltwater fluxes at an arctic forest–tundra site. Hydrol. Processes, 10, 13831400, doi:10.1002/(SICI)1099-1085(199610)10:10<1383::AID-HYP468>3.0.CO;2-W.

    • Search Google Scholar
    • Export Citation
  • Martin, E., and Lejeune Y. , 1998: Turbulent fluxes above the snow surface. Ann. Glaciol., 26, 179183.

  • Morin, S., Lejeune Y. , Lesaffre B. , Panel J.-M. , Poncet D. , David P. , and Sudul M. , 2012: A 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models. Earth Syst. Sci. Data, 4, 1321, doi:10.5194/essd-4-13-2012.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and Brun E. , 2001: Physical properties of snow. Snow Ecology, H. G. Jones et al., Eds., Cambridge University Press, 45–126.

  • Pomeroy, J. W., Gray D. M. , Shook K. R. , Toth B. , Essery R. L. H. , Pietroniro A. , and Hedstrom N. , 1998: An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrol. Processes, 12, 23392367, doi:10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.0.CO;2-L.

    • Search Google Scholar
    • Export Citation
  • Raj Singh, P., and Yew Gan T. , 2005: Modelling snowpack surface temperature in the Canadian Prairies using simplified heat flow models. Hydrol. Processes, 19, 34813500, doi:10.1002/hyp.5839.

    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., Landry C. C. , Hayashi M. , Quinton W. L. , and Lundquist J. D. , 2013: Approximating snow surface temperature from standard temperature and humidity data: New possibilities for snow model and remote sensing evaluation. Water Resour. Res., 49, 80538069, doi:10.1002/2013WR013958.

    • Search Google Scholar
    • Export Citation
  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.

    • Search Google Scholar
    • Export Citation
  • Schirmer, M., and Jamieson B. , 2014: Limitations of using a thermal imager for snow pit temperatures. Cryosphere, 8, 387394, doi:10.5194/tc-8-387-2014.

    • Search Google Scholar
    • Export Citation
  • Sicart, J. E., Wagnon P. , and Ribstein P. , 2005: Atmospheric controls of the heat balance of Zongo Glacier (16°S, Bolivia). J. Geophys. Res., 110, D12106, doi:10.1029/2004JD005732.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2, 725, doi:10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stössel, F., Guala M. , Fierz C. , Manes C. , and Lehning M. , 2010: Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover. Water Resour. Res., 46, W04511, doi:10.1029/2009WR008198.

    • Search Google Scholar
    • Export Citation
  • Tarboton, D. G., and Luce C. H. , 1996: Utah Energy Balance Snow Accumulation and Melt Model (UEB): Computer model technical description users guide. Utah Water Research Laboratory/USDA Forest Service Intermountain Research Station, 64 pp. [Available online at http://www.fs.fed.us/rm/boise/publications/watershed/rmrs_1996_tarbotond001.pdf.]

  • Verseghy, D. L., 1991: Class—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111133, doi:10.1002/joc.3370110202.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., McFarlane N. A. , and Lazare M. , 1993: Class—A Canadian land surface scheme for GCMS, II. Vegetation model and coupled runs. Int. J. Climatol., 13, 347370, doi:10.1002/joc.3370130402.

    • Search Google Scholar
    • Export Citation
  • Vionnet, V., Brun E. , Morin S. , Boone A. , Faroux S. , Le Moigne P. , Martin E. , and Willemet J.-M. , 2012: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci. Model Dev., 5, 773791, doi:10.5194/gmd-5-773-2012.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and Wiscombe W. J. , 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 27342745, doi:10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., and Warren S. G. , 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 27122733, doi:10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 4 4 4

Aerodynamic and Radiative Controls on the Snow Surface Temperature

View More View Less
  • 1 Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
  • | 2 School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
  • | 3 Civil and Geological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Restricted access

Abstract

The snow surface temperature (SST) is essential for estimating longwave radiation fluxes from snow. SST can be diagnosed using finescale multilayer snow physics models that track changes in snow properties and internal energy; however, these models are heavily parameterized, have high predictive uncertainty, and require continuous simulation to estimate prognostic state variables. Here, a relatively simple model to estimate SST that is not reliant on prognostic state variables is proposed. The model assumes that the snow surface is poorly connected thermally to the underlying snowpack and largely transparent for most of the shortwave radiation spectrum, such that a snow surface energy balance among only sensible heat, latent heat, longwave radiation, and near-infrared radiation is possible and is called the radiative psychrometric model (RPM). The RPM SST is sensitive to air temperature, humidity, ventilation, and longwave irradiance and is secondarily affected by absorption of near-infrared radiation at the snow surface that was higher where atmospheric deposition of particulates was more likely to be higher. The model was implemented with neutral stability, an implicit windless exchange coefficient, and constant shortwave absorption factors and aerodynamic roughness lengths. It was evaluated against radiative SST measurements from the Canadian Prairies and Rocky Mountains, French Alps, and Bolivian Andes. With optimized and global shortwave absorption and aerodynamic roughness length parameters, the model is shown to accurately predict SST under a wide range of conditions, providing superior predictions when compared to air temperature, dewpoint, or ice bulb calculation approaches.

Corresponding author address: John Pomeroy, Centre for Hydrology, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada. E-mail: john.pomeroy@usask.ca

Abstract

The snow surface temperature (SST) is essential for estimating longwave radiation fluxes from snow. SST can be diagnosed using finescale multilayer snow physics models that track changes in snow properties and internal energy; however, these models are heavily parameterized, have high predictive uncertainty, and require continuous simulation to estimate prognostic state variables. Here, a relatively simple model to estimate SST that is not reliant on prognostic state variables is proposed. The model assumes that the snow surface is poorly connected thermally to the underlying snowpack and largely transparent for most of the shortwave radiation spectrum, such that a snow surface energy balance among only sensible heat, latent heat, longwave radiation, and near-infrared radiation is possible and is called the radiative psychrometric model (RPM). The RPM SST is sensitive to air temperature, humidity, ventilation, and longwave irradiance and is secondarily affected by absorption of near-infrared radiation at the snow surface that was higher where atmospheric deposition of particulates was more likely to be higher. The model was implemented with neutral stability, an implicit windless exchange coefficient, and constant shortwave absorption factors and aerodynamic roughness lengths. It was evaluated against radiative SST measurements from the Canadian Prairies and Rocky Mountains, French Alps, and Bolivian Andes. With optimized and global shortwave absorption and aerodynamic roughness length parameters, the model is shown to accurately predict SST under a wide range of conditions, providing superior predictions when compared to air temperature, dewpoint, or ice bulb calculation approaches.

Corresponding author address: John Pomeroy, Centre for Hydrology, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada. E-mail: john.pomeroy@usask.ca
Save