• Barnston, A. G., Glantz M. H. , and He Y. , 1999: Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteor. Soc., 80, 217243, doi:10.1175/1520-0477(1999)080<0217:PSOSAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Hwu W. , 2002: A study of land–atmosphere interactions during summertime rainfall using a mesoscale model. J. Geophys. Res., 107, 4227, doi:10.1029/2000JD000254.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., Viterbo P. , Miller M. J. , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization. Mon. Wea. Rev., 124, 362383, doi:10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2009: Land-surface–atmosphere coupling in observations and models. J. Adv. Model. Earth Syst., 1, doi:10.3894/JAMES.2009.1.4.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball J. H. , 1998: FIFE surface climate and site-average dataset 1987–89. J. Atmos. Sci., 55, 10911108, doi:10.1175/1520-0469(1998)055<1091:FSCASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. , 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, doi:10.1029/95JD02135.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., Cox P. M. , Lee S. E. , and Woodward F. I. , 1997: Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 387, 796799, doi:10.1038/42924.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Schubert S. D. , 2002: Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3, 149165, doi:10.1175/1525-7541(2002)003<0149:WVTADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Chern J. , 2006: Simulation of water sources and precipitation recycling for the MacKenzie, Mississippi, and Amazon River basins. J. Hydrometeor., 7, 312329, doi:10.1175/JHM501.1.

    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., Hanesiak J. M. , and Burrows W. R. , 2011a: Impacts of land–atmosphere feedbacks on deep, moist convection on the Canadian Prairies. Earth Interact., 15, doi:10.1175/2011EI407.1.

    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., Hanesiak J. M. , and Burrows W. R. , 2011b: On the surface-convection feedback during drought periods on the Canadian Prairies. Earth Interact., 15, doi:10.1175/2010EI381.1.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., Entekhabi D. , and Eagleson P. S. , 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, doi:10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., Dirmeyer P. A. , Sudjarat A. , Levy B. S. , and Bernal F. , 2001: A 36-yr climatological description of the evaporative sources of warm-season precipitation in the Mississippi River basin. J. Hydrometeor., 2, 537557, doi:10.1175/1525-7541(2001)002<0537:AYCDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Bukovsky, M. S., Gochis D. J. , and Mearns L. O. , 2013: Towards assessing NARCCAP regional climate model credibility for the North American monsoon: Current climate simulations. J. Climate, 26, 88028826, doi:10.1175/JCLI-D-12-00538.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., Quirk W. J. , Chow S.-H. , and Kornfield J. , 1977: Comparative study of effects of albedo change on drought in semiarid regions. J. Atmos. Sci., 34, 13661385, doi:10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chin, M., Rood R. B. , Lin S.-J. , Muller J. F. , and Thomspon A. M. , 2000: Atmospheric sulfur cycle in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24 67124 687, doi:10.1029/2000JD900384.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and Suarez M. J. , 1999: A shortwave radiation parameterization for atmospheric studies. NASA/TM-1999-104606, Vol. 15, 38 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.]

  • Conil, S., Douville H. , and Tyteca S. , 2007: The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments. Climate Dyn., 28, 125145, doi:10.1007/s00382-006-0172-2.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., Bonan G. B. , and Levis S. , 2006: Soil moisture feedbacks to precipitation in South Africa. J. Climate, 19, 41984206, doi:10.1175/JCLI3856.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Brubaker K. L. , 1999: Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res., 104, 19 38319 397, doi:10.1029/1999JD900222.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Koster R. D. , and Guo Z. , 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, doi:10.1175/JHM532.1.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., Leung L. R. , Davis C. A. , and Kuo Y. H. , 2005: Simulation of warm season rainfall using WRF Regional Climate Model. 6th WRF/15th MM5 Users' Workshop, Boulder, CO, University Corporation for Atmospheric Research, 9.2. [Available online at http://n2t.net/ark:/85065/d7gb2355.]

  • Douville, H., 2002: Influence of soil moisture on the Asian and African monsoons. Part II: interannual variability. J. Climate, 15, 701720, doi:10.1175/1520-0442(2002)015<0701:IOSMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, doi:10.1029/97WR03499.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and Bras R. L. , 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880, doi:10.1002/qj.49712051806.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and Devenyi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Dirmeyer P. A. , 2013: Interannual variability of land–atmosphere coupling strength. J. Hydrometeor., 14, 16361646, doi:10.1175/JHM-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Yao Y. , Yarosh E. S. , Janowiak J. E. , and Mo K. C. , 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, doi:10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7. [Available online at http://www.cpc.ncep.noaa.gov/products/outreach/research_papers/ncep_cpc_atlas/7/.]

  • Higgins, R. W., Zhou Y. , and Kim H.-K. , 2001: Relationships between El Niño–Southern Oscillation and the Arctic Oscillation: A climate–weather link. NCEP/Climate Prediction Center Atlas 8. [Available online at http://www.cpc.noaa.gov/research_papers/ncep_cpc_atlas/8/toc.html.]

  • Hong, S.-Y., and Pan H.-L. , 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 25992620, doi:10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and Wallace J. M. , 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multi-Satellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joussaume, S., Sadourny R. , and Jouzel J. , 1984: A general-circulation model of water isotope cycles in the atmosphere. Nature, 311, 2429, doi:10.1038/311024a0.

    • Search Google Scholar
    • Export Citation
  • Kim, W., Yeh S.-W. , Kim J.-H. , Kug J.-S. , and Kwon M. , 2011: The unique 2009–2010 El Niño event: A fast phase transition of warm pool El Niño to La Niña. Geophys. Res. Lett., 38, L15809, doi:10.1029/2011GL048521.

    • Search Google Scholar
    • Export Citation
  • Koster, R., Jouzel J. , Suozzo R. , Russell G. , Broecker W. , Rind D. , and Eagleson P. , 1986: Global sources of local precipitation as determined by the NASA GISS GCM. Geophys. Res. Lett., 13, 121124, doi:10.1029/GL013i002p00121.

    • Search Google Scholar
    • Export Citation
  • Koster, R., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Hoerling M. P. , 1998: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11, 32953308, doi:10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Lang, S., Tao W.-K. , Cifelli R. , Olson W. , Halverson J. , Rutledge S. , and Simpson J. , 2007: Improving simulations of convective system from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, doi:10.1175/JAS3879.1.

    • Search Google Scholar
    • Export Citation
  • Lang, S., Tao W.-K. , Zeng X. , and Li Y. , 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, doi:10.1175/JAS-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Lang, S., Tao W.-K. , Chern J.-D. , Wu D. , and Li X. , 2014: Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci., 71, 35833612, doi:10.1175/JAS-D-13-0330.1.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., Gentine P. , Findell F. L. , D’Andrea F. , Sobel A. H. , and Salvucci G. D. , 2013: An idealized prototype for large-scale land–atmosphere coupling. J. Climate, 26, 23792389, doi:10.1175/JCLI-D-11-00561.1.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2014: Introducing multi-sensor satellite radiance-based evaluation for regional earth system modeling. J. Geophys. Res. Atmos., 119, 84508475, doi:10.1002/2013JD021424.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, doi:10.1175/BAMS-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1994: Influence of the land surface in the Asian summer monsoon: External conditions versus internal feedbacks. J. Climate, 7, 10331049, doi:10.1175/1520-0442(1994)007<1033:IOTLSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meng, X. H., Evans J. P. , and McCabe M. F. , 2011: Numerical modelling and land–atmosphere feedback of drought in southeast Australia. IAHS Publ., 344, 144149.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Stenchikov G. L. , and Robock A. , 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18, 12271246, doi:10.1175/JCLI3369.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and Berbery E. H. , 2004: Low-level jets and the summer precipitation regimes over North America. J. Geophys. Res., 109, D06117, doi:10.1029/2003JD004106.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2015: Evolution and current state of our understanding of the role played in the climate system by land surface processes in semi-arid regions. Global Planet. Change, 133, 201222, doi:10.1016/j.gloplacha.2015.08.010.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Liu Z. , and Williams J. W. , 2006: Observed vegetation–climate feedbacks in the United States. J. Climate, 19, 763786, doi:10.1175/JCLI3657.1.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., Kumar S. V. , Mocko D. M. , and Tian Y. , 2011: Estimating evapotranspiration with land data assimilation systems. Hydrol. Processes, 25, 39793992, doi:10.1002/hyp.8387.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ. Modell. Software, 67, 149159, doi:10.1016/j.envsoft.2015.01.007.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Walko R. L. , Steyaert L. T. , Vidale P. L. , Liston G. E. , Lyons W. A. , and Chase T. N. , 1999: The influence of anthropogenic landscape changes on weather in south Florida. Mon. Wea. Rev., 127, 16631673, doi:10.1175/1520-0493(1999)127<1663:TIOALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1968: Atmospheric water vapor transport and the water balance of North America. Part II: Large-scale water balance investigations. Mon. Wea. Rev., 96, 720734, doi:10.1175/1520-0493(1968)096<0720:AWVTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1971: A study of the hydrology of eastern North America using atmospheric vapor flux data. Mon. Wea. Rev., 99, 119135, doi:10.1175/1520-0493(1971)099<0119:ASOTHO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and Halpert M. S. , 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., and Blondin C. , 1990: The influence of soil wetness distribution on short-range rainfall forecasting in the West African Sahel. Quart. J. Roy. Meteor. Soc., 116, 14711485, doi:10.1002/qj.49711649611.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , and Kumar S. V. , 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, doi:10.1175/JHM-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Suarez M. J. , Pegion P. J. , Koster R. D. , and Bacmeister J. T. , 2008: Potential predictability of long-term drought and pluvial conditions in the U.S. Great Plains. J. Climate, 21, 802816, doi:10.1175/2007JCLI1741.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Stöckli R. , 2008: The role of land–atmosphere interactions for climate variability in Europe. Climate Variability and Extremes during the Past 100 Years, S. Bronnimann et al., Eds., Advances in Global Change Research, Vol. 33, Springer, 179–193, doi:10.1007/978-1-4020-6766-2_12.

  • Seneviratne, S. I., and Coauthors, 2006: Soil moisture memory AGCM simulations: analysis of global land–atmosphere coupling experiment (GLACE) data. J. Hydrometeor., 7, 10901112, doi:10.1175/JHM533.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2013: Impact of soil moisture–climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett., 40, 52125217, doi:10.1002/grl.50956.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Mintz Y. , 1982: The influence of land-surface evapotranspiration on the earth’s climate. Science, 215, 14981501, doi:10.1126/science.215.4539.1498.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Klemp J. B. , 2008: A time-split nonhydrostatic atmospheric model for Weather Research and Forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Lebel T. , 1998: Observational evidence of persistent convective-scale rainfall patterns. Mon. Wea. Rev., 126, 15971607, doi:10.1175/1520-0493(1998)126<1597:OEOPCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and Wang H. , 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873, doi:10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Dai A. , Rasmussen R. M. , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Wang, H., Schubert S. , Koster R. , Ham Y.-G. , and Suarez M. , 2014: On the role of SST forcing in the 2011 and 2012 extreme U.S. heat and drought: A study in contrasts. J. Hydrometeor., 15, 12551273, doi:10.1175/JHM-D-13-069.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., Roy S. B. , and Avissar R. , 2002: Sensitivity of simulated mesoscale atmospheric circulations resulting from landscape heterogeneity to aspects of model configuration. J. Geophys. Res., 107, 8041, doi:10.1029/2001JD000376.

    • Search Google Scholar
    • Export Citation
  • Wu, D., Peters-Lidard C. , Tao W.-K. , and Peterson W. , 2016: Evaluation of NU-WRF rainfall forecasts for IFloods. J. Hydrometeor., 17, 13171335, doi:10.1175/JHM-D-15-0134.1.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., Esbensen S. , and Chu J. H. , 1973: Determination of average bulk properties of tropical cloud clusters from large‐scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., Evans J. P. , Geerken R. A. , and Smith R. B. , 2007: Climate and vegetation in the Middle East: Interannual variability and drought feedbacks. J. Climate, 20, 39243941, doi:10.1175/JCLI4223.1.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., Santanello J. A. , Kumar S. V. , and Peters-Lidard C. D. , 2013: Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF). J. Hydrometeor., 14, 360367, doi:10.1175/JHM-D-12-069.1.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., Portis D. H. , and Lamb P. J. , 2001: Investigation of the large-scale atmospheric moisture field over the midwestern United States in relation to summer precipitation. Part I: Relationships between moisture budget components on different timescales. J. Climate, 14, 582597, doi:10.1175/1520-0442(2001)014<0582:IOTLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., Leung R. L. , Gochis D. , Qian Y. , and Lettenmaier D. P. , 2009: Evaluating the influence of antecedent soil moisture on variability of the North American monsoon precipitation in the coupled MM5/VIC modeling system. J. Adv. Model. Earth Syst., 1, doi:10.3894/JAMES.2009.1.13.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 13 13 13

Scale Dependence of Land–Atmosphere Interactions in Wet and Dry Regions as Simulated with NU-WRF over the Southwestern and South-Central United States

View More View Less
  • 1 GESTAR, Morgan State University, Baltimore, and Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Science Systems and Applications, Inc., Lanham, Maryland
  • | 3 Earth System Science Interdisciplinary Center, Joint Global Change Research Institute, University of Maryland, College Park, College Park, Maryland
  • | 4 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

Large-scale forcing and land–atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture–land surface flux feedback that could worsen drought conditions in the southwestern United States.

Corresponding author address: Dr. Yaping Zhou, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: yaping.zhou-1@nasa.gov

Abstract

Large-scale forcing and land–atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture–land surface flux feedback that could worsen drought conditions in the southwestern United States.

Corresponding author address: Dr. Yaping Zhou, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: yaping.zhou-1@nasa.gov
Save