Partitioning Evapotranspiration into Soil Evaporation and Canopy Transpiration via a Two-Source Variational Data Assimilation System

Tongren Xu State Key Laboratory of Remote Sensing Science, Research Center for Remote Sensing and GIS, and School of Geography, Beijing Normal University, Beijing, China

Search for other papers by Tongren Xu in
Current site
Google Scholar
PubMed
Close
,
Sayed M. Bateni Department of Civil and Environmental Engineering, and Water Resources Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Sayed M. Bateni in
Current site
Google Scholar
PubMed
Close
,
Steven A. Margulis Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California

Search for other papers by Steven A. Margulis in
Current site
Google Scholar
PubMed
Close
,
Lisheng Song State Key Laboratory of Remote Sensing Science, Research Center for Remote Sensing and GIS, and School of Geography, Beijing Normal University, Beijing, China

Search for other papers by Lisheng Song in
Current site
Google Scholar
PubMed
Close
,
Shaomin Liu State Key Laboratory of Remote Sensing Science, Research Center for Remote Sensing and GIS, and School of Geography, Beijing Normal University, Beijing, China

Search for other papers by Shaomin Liu in
Current site
Google Scholar
PubMed
Close
, and
Ziwei Xu State Key Laboratory of Remote Sensing Science, Research Center for Remote Sensing and GIS, and School of Geography, Beijing Normal University, Beijing, China

Search for other papers by Ziwei Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The primary objective of this study is to assess the accuracy of the two-source variational data assimilation (TVDA) system for partitioning evapotranspiration (ET) into soil evaporation (ETS) and canopy transpiration (ETC). Its secondary aim is to compare performance of the TVDA system with the commonly used two-source surface energy balance (TSEB) method. A combination of eddy-covariance-based ET observations and stable-isotope-based measurements of the ratio of evaporation and transpiration to total evapotranspiration (ETS/ET and ETC/ET) over an irrigated cropland site (the so-called Daman site) in the middle reach of the Heihe River basin (northwestern China) was used to investigate these objectives. The results indicate that the TVDA method predicts ETS and ETC more accurately than TSEB. Root-mean-square errors (RMSEs) of midday (1300–1500 LT) averaged soil and canopy latent heat flux (LES and LEC) estimates from TVDA are 23.1 and 133.0 W m−2, respectively. Corresponding RMSE values from TSEB are 41.9 and 156.0 W m−2. Compared to TSEB, the TVDA method takes advantage of all of the information in land surface temperature observations in the estimation period by leveraging a dynamic model (the heat diffusion equation) and thus can generate more accurate LES and LEC estimates.

Corresponding author address: Dr. Tongren Xu, School of Geography, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China. E-mail: xutr@bnu.edu.cn

Abstract

The primary objective of this study is to assess the accuracy of the two-source variational data assimilation (TVDA) system for partitioning evapotranspiration (ET) into soil evaporation (ETS) and canopy transpiration (ETC). Its secondary aim is to compare performance of the TVDA system with the commonly used two-source surface energy balance (TSEB) method. A combination of eddy-covariance-based ET observations and stable-isotope-based measurements of the ratio of evaporation and transpiration to total evapotranspiration (ETS/ET and ETC/ET) over an irrigated cropland site (the so-called Daman site) in the middle reach of the Heihe River basin (northwestern China) was used to investigate these objectives. The results indicate that the TVDA method predicts ETS and ETC more accurately than TSEB. Root-mean-square errors (RMSEs) of midday (1300–1500 LT) averaged soil and canopy latent heat flux (LES and LEC) estimates from TVDA are 23.1 and 133.0 W m−2, respectively. Corresponding RMSE values from TSEB are 41.9 and 156.0 W m−2. Compared to TSEB, the TVDA method takes advantage of all of the information in land surface temperature observations in the estimation period by leveraging a dynamic model (the heat diffusion equation) and thus can generate more accurate LES and LEC estimates.

Corresponding author address: Dr. Tongren Xu, School of Geography, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China. E-mail: xutr@bnu.edu.cn
Save
  • Agam, N., and Coauthors, 2010: Application of the Priestley–Taylor approach in a two-source surface energy balance model. J. Hydrometeor., 11, 185198, doi:10.1175/2009JHM1124.1.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., 2000: Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol., 229, 2741, doi:10.1016/S0022-1694(99)00194-8.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Diak G. R. , Kustas W. P. , and Mecikalski J. R. , 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60, 195216, doi:10.1016/S0034-4257(96)00215-5.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Mecikalski J. R. , Torn R. D. , Kustas W. P. , and Basara J. B. , 2004: A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J. Hydrometeor., 5, 343363, doi:10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Kustas W. P. , Houborg R. , Starks P. J. , and Agam N. , 2008: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ., 112, 42274241, doi:10.1016/j.rse.2008.07.009.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., Falge E. , Gu L. H. , and Olson R. , 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bateni, S. M., and Entekhabi D. , 2012: Relative efficiency of land surface energy balance components. Water Resour. Res., 48, W04510, doi:10.1029/2011WR011357.

    • Search Google Scholar
    • Export Citation
  • Bateni, S. M., and Liang S. , 2012: Estimating surface energy fluxes using a dual-source data assimilation approach adjoined to the heat diffusion equation. J. Geophys. Res., 117, D17118, doi:10.1029/2012JD017618.

    • Search Google Scholar
    • Export Citation
  • Bateni, S. M., Jeng D. S. , and Naeini S. M. M. , 2012: Estimating soil thermal properties from sequences of land surface temperature using hybrid Genetic Algorithm–Finite Difference method. Eng. Appl. Artif. Intell., 25, 14251436, doi:10.1016/j.engappai.2012.02.017.

    • Search Google Scholar
    • Export Citation
  • Bateni, S. M., Entekhabi D. , and Jeng D. S. , 2013a: Variational assimilation of land surface temperature and the estimation of surface energy balance components. J. Hydrol., 481, 143156, doi:10.1016/j.jhydrol.2012.12.039.

    • Search Google Scholar
    • Export Citation
  • Bateni, S. M., Entekhabi D. , and Castelli F. , 2013b: Mapping evaporation and estimation of surface control of evaporation using remotely sensed land surface temperature from a constellation of satellites. Water Resour. Res., 49, 950968, doi:10.1002/wrcr.20071.

    • Search Google Scholar
    • Export Citation
  • Bateni, S. M., Entekhabi D. , Margulis S. , Castelli F. , and Kergoat L. , 2014: Coupled estimation of surface heat fluxes and vegetation dynamics from remotely sensed land surface temperature and fraction of photosynthetically active radiation. Water Resour. Res., 50, 84208440, doi:10.1002/2013WR014573.

    • Search Google Scholar
    • Export Citation
  • Boulet, G., Chehbouni A. , Braud I. , and Vauclin M. , 1999: Mosaic versus dual source approaches for modelling the surface energy balance of a semi-arid land. Hydrol. Earth Syst. Sci., 3, 247258, doi:10.5194/hess-3-247-1999.

    • Search Google Scholar
    • Export Citation
  • Byun, D. W., 1990: On the analytical solution of flux-profile relationships for the atmospheric surface layer. J. Appl. Meteor., 29, 652657, doi:10.1175/1520-0450(1990)029<0652:OTASOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caparrini, F., Castelli F. , and Entekhabi D. , 2003: Mapping of land atmosphere heat fluxes and surface parameters with remote sensing data. Bound.-Layer Meteor., 107, 605633, doi:10.1023/A:1022821718791.

    • Search Google Scholar
    • Export Citation
  • Caparrini, F., Castelli F. , and Entekhabi D. , 2004a: Variational estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery. Water Resour. Res., 40, W12515, doi:10.1029/2004WR003358.

    • Search Google Scholar
    • Export Citation
  • Caparrini, F., Castelli F. , and Entekhabi D. , 2004b: Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences. J. Hydrometeor., 5, 145159, doi:10.1175/1525-7541(2004)005<0145:EOSTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chehbouni, A., Nouvellon Y. , Kerr Y. H. , Moran M. S. , Watts C. , Prevot L. , Goodrich D. C. , and Rambal S. , 2001: Directional effect on radiative surface temperature measurements over a semiarid grassland site. Remote Sens. Environ., 76, 360372, doi:10.1016/S0034-4257(01)00183-3.

    • Search Google Scholar
    • Export Citation
  • Colaizzi, P. D., Evett S. R. , Howell T. A. , Li F. , Kustas W. P. , and Anderson M. C. , 2012a: Radiation model for row crops: I. Geometric view factors and parameter optimization. Agron. J., 104, 225240, doi:10.2134/agronj2011.0082.

    • Search Google Scholar
    • Export Citation
  • Colaizzi, P. D., and Coauthors, 2012b: Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Adv. Water Resour., 50, 134151, doi:10.1016/j.advwatres.2012.06.004.

    • Search Google Scholar
    • Export Citation
  • Crago, R. D., 1996: Conservation and variability of the evaporative fraction during the daytime. J. Hydrol., 180, 173194, doi:10.1016/0022-1694(95)02903-6.

    • Search Google Scholar
    • Export Citation
  • Crago, R. D., and Brutsaert W. , 1996: Daytime evaporation and self-preservation of the evaporative fraction and the Bowen ratio. J. Hydrol., 178, 241255, doi:10.1016/0022-1694(95)02803-X.

    • Search Google Scholar
    • Export Citation
  • Craig, H., and Gordon L. , 1965: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi, Ed., Consiglio nazionale delle ricerche, 9–130.

  • Crow, W. T., and Kustas W. P. , 2005: Utility of assimilating surface radiometric temperature observations for evaporative fraction and heat transfer coefficient retrieval. Bound.-Layer Meteor., 115, 105130, doi:10.1007/s10546-004-2121-0.

    • Search Google Scholar
    • Export Citation
  • de Vries, D. A., 1963: Thermal properties of soils. Physics of Plant Environment, W. R. van Wijk, Ed., North-Holland, 210–235.

  • Ding, R., Kang S. , Zhang Y. , Hao X. , Tong L. , and Du T. , 2013: Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agric. Water Manage., 127, 8596, doi:10.1016/j.agwat.2013.05.018.

    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 2002: Ecohydrology: Darwinian Expression of Vegetation Form and Function. Cambridge University Press, 443 pp.

  • Er-Raki, S., Chehbouni A. , Boulet G. , and Williams D. G. , 2010: Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agric. Water Manage., 97, 17691778, doi:10.1016/j.agwat.2010.06.009.

    • Search Google Scholar
    • Export Citation
  • Farouki, O. T., 1981: The thermal properties of soils in cold regions. Cold Reg. Sci. Technol., 5, 6775, doi:10.1016/0165-232X(81)90041-0.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Entekhabi D. , and Chehbouni A. , 2007: Analysis of evaporative fraction diurnal behavior. Agric. For. Meteor., 143, 1329, doi:10.1016/j.agrformet.2006.11.002.

    • Search Google Scholar
    • Export Citation
  • He, T., Liang S. , and Song D. X. , 2014: Analysis of global land surface albedo climatology and spatial–temporal variation during 1981–2010 from multiple satellite products. J. Geophys. Res. Atmos., 119, 10 28110 298, doi:10.1002/2014JD021667.

    • Search Google Scholar
    • Export Citation
  • Herbst, M., Kappen L. , Thamm F. , and Vanselow R. , 1996: Simultaneous measurements of transpiration, soil evaporation and total evaporation in a maize field in northern Germany. J. Exp. Bot., 47, 19571962, doi:10.1093/jxb/47.12.1957.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., and Islam S. , 1995: Prediction of ground temperature and soil moisture content by the force–restore method. Water Resour. Res., 31, 25312539, doi:10.1029/95WR01650.

    • Search Google Scholar
    • Export Citation
  • Huang, L., and Wen X. , 2014: Temporal variations of atmospheric water vapor δD and δ18O above an arid artificial oasis cropland in the Heihe River basin. J. Geophys. Res. Atmos., 119, 11 45611 476, doi:10.1002/2014JD021891.

    • Search Google Scholar
    • Export Citation
  • Ji, X. B., Kang E. S. , Chen R. S. , Zhao W. Z. , Zhang Z. H. , and Jin B. W. , 2006: The impact of the development of water resources on environment in arid inland river basins of Hexi region, northwestern China. Environ. Geol., 50, 793801, doi:10.1007/s00254-006-0251-z.

    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., McVicar T. R. , and McCabe M. F. , 2008: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys., 29, 421469, doi:10.1007/s10712-008-9037-z.

    • Search Google Scholar
    • Export Citation
  • Komatsu, T. S., 2003: Toward a robust phenomenological expression of evaporation efficiency for unsaturated soil surfaces. J. Appl. Meteor., 42, 13301334, doi:10.1175/1520-0450(2003)042<1330:TARPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kongoli, C., Kustas W. P. , Anderson M. C. , Norman J. M. , and Alfieri J. G. , 2014: Evaluation of a two-source snow–vegetation energy balance model for estimating surface energy fluxes in a rangeland ecosystem. J. Hydrometeor., 15, 143158, doi:10.1175/JHM-D-12-0153.1.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Norman J. M. , 1999: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. For. Meteor., 94, 1329, doi:10.1016/S0168-1923(99)00005-2.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Anderson M. C. , 2009: Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteor., 149, 20712081, doi:10.1016/j.agrformet.2009.05.016.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Coauthors, 2012: Evaluating the two-source energy balance model using local thermal and surface flux observations in a strongly advective irrigated agricultural area. Adv. Water Resour., 50, 120133, doi:10.1016/j.advwatres.2012.07.005.

    • Search Google Scholar
    • Export Citation
  • Launiainen, J., 1995: Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux-profile studies. Bound.-Layer Meteor., 76, 165179, doi:10.1007/BF00710895.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Gao Z. , Lenschow D. H. , and Chen F. , 2010: An improved approach for parameterizing surface-layer turbulent transfer coefficients. Bound.-Layer Meteor., 137, 153165, doi:10.1007/s10546-010-9523-y.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2013: Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 94, 11451160, doi:10.1175/BAMS-D-12-00154.1.

    • Search Google Scholar
    • Export Citation
  • Liebethal, C., Huwe B. , and Foken T. , 2005: Sensitivity analysis for two ground heat flux calculation approaches. Agric. For. Meteor., 132, 253262, doi:10.1016/j.agrformet.2005.08.001.

    • Search Google Scholar
    • Export Citation
  • Liou, Y. A., and Kar S. K. , 2014: Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—A review. Energies, 7, 28212849, doi:10.3390/en7052821.

    • Search Google Scholar
    • Export Citation
  • Liu, J., Zehnder A. J. B. , and Yang H. , 2009: Global consumptive water use for crop production: The importance of green water and virtual water. Water Resour. Res., 45, W05428, doi:10.1029/2007WR006051.

    • Search Google Scholar
    • Export Citation
  • Liu, S. M., Xu Z. W. , Wang W. Z. , Wang W. Z. , Jia Z. Z. , Zhu M. J. , Bai J. , and Wang J. M. , 2011: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci., 15, 12911306, doi:10.5194/hess-15-1291-2011.

    • Search Google Scholar
    • Export Citation
  • Liu, S. M., and Coauthors, 2016: Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agr. Forest Meteor., doi:10.1016/j.agrformet.2016.04.008, in press.

    • Search Google Scholar
    • Export Citation
  • Long, D., and Singh V. P. , 2012: A two-source trapezoid model for evapotranspiration (TIME) from satellite imagery. Remote Sens. Environ., 121, 370388, doi:10.1016/j.rse.2012.02.015.

    • Search Google Scholar
    • Export Citation
  • Ma, M. G., Chen Y. Y. , Wang X. F. , Han H. B. , Yu W. P. , Wang H. B. , and Shang H. L. , 2013: HiWATER: Dataset of soil parameters in the middle reaches of the Heihe River basin. Heihe Plan Science Data Center, accessed 29 December 2013, doi:10.3972/hiwater.147.2013.db.

  • Merlin, O., Chirouze J. , Olioso A. , Jarlan L. , Chehbouni A. , and Boulet G. , 2014: An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S). Agric. For. Meteor., 184, 188203, doi:10.1016/j.agrformet.2013.10.002.

    • Search Google Scholar
    • Export Citation
  • Morillas, L., García M. , Nieto H. , Villagarcia L. , Sandholt I. , Gonzalez-Dugo M. P. , Zarco-Tejada P. J. , and Domingo F. , 2013: Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective. Remote Sens. Environ., 136, 234246, doi:10.1016/j.rse.2013.05.010.

    • Search Google Scholar
    • Export Citation
  • Murray, T., and Verhoef A. , 2007a: Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements: I. A universal approach to calculate thermal inertia. Agric. For. Meteor., 147, 8087, doi:10.1016/j.agrformet.2007.07.004.

    • Search Google Scholar
    • Export Citation
  • Murray, T., and Verhoef A. , 2007b: Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements: II. Diurnal shape of soil heat flux. Agric. For. Meteor., 147, 8897, doi:10.1016/j.agrformet.2007.06.009.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., Kustas W. P. , and Humes K. , 1995: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteor., 77, 263293, doi:10.1016/0168-1923(95)02265-Y.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., and Coauthors, 2003: Remote sensing of surface energy fluxes at 101-m pixel resolutions. Adv. Water Resour., 39, 1221, doi:10.1029/2002WR001775.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, G. Y., Shi P. , and Wang L. , 2006: Theoretical analysis of a remotely measurable soil evaporation transfer coefficient. Remote Sens. Environ., 101, 390398, doi:10.1016/j.rse.2006.01.007.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Friedl M. A. , 2003: Diurnal covariation in soil heat flux and net radiation. J. Appl. Meteor., 42, 851862, doi:10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scott, R. L., Huxman T. E. , Cable W. L. , and Emmerich W. E. , 2006: Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuhuan Desert shrubland. Hydrol. Processes, 20, 32273243, doi:10.1002/hyp.6329.

    • Search Google Scholar
    • Export Citation
  • Shokri, N., Lehmann P. , Vontobel P. , and Or D. , 2008: Drying front and water content dynamics during evaporation from sand delineated by neutron radiography. Water Resour. Res., 44, W06418, doi:10.1029/2007WR006385.

    • Search Google Scholar
    • Export Citation
  • Shokri, N., Lehmann P. , and Or D. , 2009: Characteristics of evaporation from partially wettable porous media. Water Resour. Res., 45, W02415, doi:10.1029/2008WR007185.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., and Wallace J. S. , 1985: Evaporation from sparse crops—An energy combination theory. Quart. J. Roy. Meteor. Soc., 111, 839855, doi:10.1002/qj.49711146910.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., and Gurney R. J. , 1990: The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Quart. J. Roy. Meteor. Soc., 116, 497519, doi:10.1002/qj.49711649213.

    • Search Google Scholar
    • Export Citation
  • Sini, F., Boni G. , Caparrini F. , and Entekhabi D. , 2008: Estimation of large-scale evaporation fields based on assimilation of remotely sensed land temperature. Water Resour. Res., 44, W06410, doi:10.1029/2006WR005574.

    • Search Google Scholar
    • Export Citation
  • Song, L. S., Liu S. M. , Zhang X. , Zhou J. , and Li M. S. , 2015: Estimating and validating soil evaporation and crop transpiration during the HiWATER-MUSOEXE. IEEE Geosci. Remote Sens. Lett., 12, 334338, doi:10.1109/LGRS.2014.2339360.

    • Search Google Scholar
    • Export Citation
  • Song, L. S., and Coauthors, 2016a: Applications of a thermal-based two-source energy balance model using Priestley–Taylor approach for surface temperature partitioning under advective conditions. J. Hydrol., 540, 574587, doi:10.1016/j.jhydrol.2016.06.034.

    • Search Google Scholar
    • Export Citation
  • Song, L. S., Liu S. M. , Kustas W. P. , Zhou J. , Xu Z. W. , Xia T. , and Li M. , 2016b: Application of remote sensing–based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agric. For. Meteor, doi:10.1016/j.agrformet.2016.01.005, in press.

    • Search Google Scholar
    • Export Citation
  • Wang, K. C., and Dickinson R. E. , 2012: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys., 50, RG2005, doi:10.1029/2011RG000373.

    • Search Google Scholar
    • Export Citation
  • Wang, J. M., Zhuang J. X. , Wang W. Z. , Liu S. M. , and Xu Z. W. , 2015: Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geosci. Remote Sens. Lett., 12, 259263, doi:10.1109/LGRS.2014.2334703.

    • Search Google Scholar
    • Export Citation
  • Wen, X. F., Sun X. M. , Zhang S. C. , Yu G. R. , Sargent S. D. , and Lee X. , 2008: Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. J. Hydrol., 349, 489500, doi:10.1016/j.jhydrol.2007.11.021.

    • Search Google Scholar
    • Export Citation
  • Wen, X. F., Lee X. , Sun X. M. , Wang J. L. , Tang Y. K. , Li S. G. , and Yu G. R. , 2012: Inter-comparison of four commercial analyzers for water vapor isotope measurement. J. Atmos. Oceanic Technol., 29, 235247, doi:10.1175/JTECH-D-10-05037.1.

    • Search Google Scholar
    • Export Citation
  • Wen, X. F., Yang B. , Sun X. M. , and Lee X. , 2016: Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agric. For. Meteor., doi:10.1016/j.agrformet.2015.12.003, in press.

    • Search Google Scholar
    • Export Citation
  • Williams, D. G., and Coauthors, 2004: Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteor., 125, 241258, doi:10.1016/j.agrformet.2004.04.008.

    • Search Google Scholar
    • Export Citation
  • Xu, T. R., Bateni S. M. , Liang S. , Entekhabi D. , and Mao K. B. , 2014: Estimation of surface turbulent heat fluxes via variational assimilation of sequences of land surface temperatures from geostationary operational environmental satellites. J. Geophys. Res. Atmos., 119, 10 78010 798, doi:10.1002/2014JD021814.

    • Search Google Scholar
    • Export Citation
  • Xu, T. R., Bateni S. M. , and Liang S. , 2015: Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE). IEEE Geosci. Remote Sens. Lett., 12, 6872, doi:10.1109/LGRS.2014.2326180.

    • Search Google Scholar
    • Export Citation
  • Xu, Z. W., and Coauthors, 2013: Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. Res. Atmos., 118, 13 14013 157, doi:10.1002/2013JD020260.

    • Search Google Scholar
    • Export Citation
  • Yakir, D., and Sternberg L. S. L. , 2000: The use of stable isotopes to study ecosystem gas exchange. Oecologia, 123, 297311, doi:10.1007/s004420051016.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Shang S. , 2013: A hybrid dual-source scheme and trapezoid framework-based evapotranspiration model (HTEM) using satellite images: Algorithm and model test. J. Geophys. Res. Atmos., 118, 22842300, doi:10.1002/jgrd.50259.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., Long D. , and Shang S. , 2013: Remote estimation of terrestrial evapotranspiration without using meteorological data. Geophys. Res. Lett., 40, 30263030, doi:10.1002/grl.50450.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., Long D. , Guan H. D. , Liang W. , Simmons C. , and Batelaan O. , 2015: Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics. Water Resour. Res., 51, 31453165, doi:10.1002/2014WR015619.

    • Search Google Scholar
    • Export Citation
  • Zang, C. F., Liu J. G. , Van D. V. M. , and Kraxner F. , 2012: Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in northwest China. Hydrol. Earth Syst. Sci., 16, 28592870, doi:10.5194/hess-16-2859-2012.

    • Search Google Scholar
    • Export Citation
  • Zhu, G. F., and Coauthors, 2014: Simultaneously assimilating multivariate data sets into the two-source evapotranspiration model by Bayesian approach: Application to spring maize in an arid region of northwestern China. China Geosci. Model Dev., 7, 14671482, doi:10.5194/gmd-7-1467-2014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1823 1077 73
PDF Downloads 584 147 12