Effects of Urbanization and Climate Change on Peak Flows over the San Antonio River Basin, Texas

Gang Zhao Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas

Search for other papers by Gang Zhao in
Current site
Google Scholar
PubMed
Close
,
Huilin Gao Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas

Search for other papers by Huilin Gao in
Current site
Google Scholar
PubMed
Close
, and
Lan Cuo Center for Excellence in Tibetan Plateau Earth Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lan Cuo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A thorough understanding of the peak flows under urbanization and climate change—with the associated uncertainties—is indispensable for mitigating the negative social, economic, and environmental impacts from flooding. In this paper, a case study was conducted by applying the Distributed Hydrology Soil Vegetation Model (DHSVM) to the San Antonio River basin (SARB), Texas. Historical and future land-cover maps were assembled to represent the urbanization process. Future climate and its uncertainties were represented by a series of designed scenarios using the Change Factor (CF) method. The factors were calculated by comparing the model ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with baseline historical climatology during two future periods (2020–49, period 1; 2070–99, period 2). It was found that with urban impervious areas increasing alone, annual peak flows may increase from 601 (period 1) to 885 m3 s−1 (period 2). With regard to climate change, annual peak flows driven by forcings from maximum, median, and minimum CFs under four representative concentration pathways (RCPs) were analyzed. While the median values of future annual peak flows—forced by the median CF values—are very similar to the baseline under all RCPs, in each case the uncertainty range (calculated as the difference between annual peak flows driven by the maximum and minimum CFs) is very large. When urbanization and climate change coevolve, these averaged annual peak flows from the four RCPs will increase from 447 (period 1) to 707 m3 s−1 (period 2), with the uncertainties associated with climate change more than 3 times greater than those from urbanization.

Corresponding author address: Huilin Gao, Zachry Department of Civil Engineering, Texas A&M University, TAMU 3136, College Station, TX 77843. E-mail: hgao@civil.tamu.edu

Abstract

A thorough understanding of the peak flows under urbanization and climate change—with the associated uncertainties—is indispensable for mitigating the negative social, economic, and environmental impacts from flooding. In this paper, a case study was conducted by applying the Distributed Hydrology Soil Vegetation Model (DHSVM) to the San Antonio River basin (SARB), Texas. Historical and future land-cover maps were assembled to represent the urbanization process. Future climate and its uncertainties were represented by a series of designed scenarios using the Change Factor (CF) method. The factors were calculated by comparing the model ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with baseline historical climatology during two future periods (2020–49, period 1; 2070–99, period 2). It was found that with urban impervious areas increasing alone, annual peak flows may increase from 601 (period 1) to 885 m3 s−1 (period 2). With regard to climate change, annual peak flows driven by forcings from maximum, median, and minimum CFs under four representative concentration pathways (RCPs) were analyzed. While the median values of future annual peak flows—forced by the median CF values—are very similar to the baseline under all RCPs, in each case the uncertainty range (calculated as the difference between annual peak flows driven by the maximum and minimum CFs) is very large. When urbanization and climate change coevolve, these averaged annual peak flows from the four RCPs will increase from 447 (period 1) to 707 m3 s−1 (period 2), with the uncertainties associated with climate change more than 3 times greater than those from urbanization.

Corresponding author address: Huilin Gao, Zachry Department of Civil Engineering, Texas A&M University, TAMU 3136, College Station, TX 77843. E-mail: hgao@civil.tamu.edu
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • American Institutes for Research, 2005: A chronology of major events affecting the National Flood Insurance Program. FEMA Tech. Rep., 86 pp. [Available online at http://www.fema.gov/media-library-data/20130726-1602-20490-7283/nfip_eval_chronology.pdf.]

  • Arnell, N. W., and Reynard N. S. , 1996: The effects of climate change due to global warming on river flows in Great Britain. J. Hydrol., 183, 397424, doi:10.1016/0022-1694(95)02950-8.

    • Search Google Scholar
    • Export Citation
  • Arthington, A. H., Naiman R. J. , McClain M. E. , and Nilsson C. , 2010: Preserving the biodiversity and ecological services of rivers: New challenges and research opportunities. Freshwater Biol., 55, 116, doi:10.1111/j.1365-2427.2009.02340.x.

    • Search Google Scholar
    • Export Citation
  • Ashley, S. T., and Ashley W. S. , 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818, doi:10.1175/2007JAMC1611.1.

    • Search Google Scholar
    • Export Citation
  • Barnett, D., Brown S. , Murphy J. , Sexton D. H. , and Webb M. , 2006: Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Climate Dyn., 26, 489511, doi:10.1007/s00382-005-0097-1.

    • Search Google Scholar
    • Export Citation
  • Bates, B., Kundzewicz Z. W. , Wu S. , and Palutikof J. , Eds., 2008: Climate change and water. IPCC Tech. Paper IV, 210 pp. [Available online at https://www.ipcc.ch/publications_and_data/publications_and_data_technical_papers.shtml.]

  • Beniston, M., and Coauthors, 2007: Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81, 7195, doi:10.1007/s10584-006-9226-z.

    • Search Google Scholar
    • Export Citation
  • Bennett, K. E., Werner A. T. , and Schnorbus M. , 2012: Uncertainties in hydrologic and climate change impact analyses in headwater basins of British Columbia. J. Climate, 25, 57115730, doi:10.1175/JCLI-D-11-00417.1.

    • Search Google Scholar
    • Export Citation
  • Beven, K., 2007: Towards integrated environmental models of everywhere: Uncertainty, data and modelling as a learning process. Hydrol. Earth Syst. Sci., 11, 460467, doi:10.5194/hess-11-460-2007.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., Storck P. , and Lettenmaier D. P. , 2000: Hydrologic effects of logging in western Washington, United States. Water Resour. Res., 36, 32233240, doi:10.1029/2000WR900138.

    • Search Google Scholar
    • Export Citation
  • Brekke, L., Wood A. , and Pruitt T. , 2014: Downscaled CMIP3 and CMIP5 hydrology projections: Release of hydrology projections, comparison with preceding information, and summary of user needs. USBR Tech Memo., 110 pp. [Available online at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/BCSD5HydrologyMemo.pdf.]

  • Cao, Q., Sun N. , Yearsley J. , Nijssen B. , and Lettenmaier D. P. , 2016: Climate and land cover effects on the temperature of Puget Sound streams. Hydrol. Processes, 30, 22862304, doi:10.1002/hyp.10784.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2008: Assessment of flood losses in the United States. J. Contemp. Water Res. Educ., 138, 3844, doi:10.1111/j.1936-704X.2008.00007.x.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cuo, L., Lettenmaier D. P. , Mattheussen B. V. , Storck P. , and Wiley M. , 2008: Hydrologic prediction for urban watersheds with the Distributed Hydrology–Soil–Vegetation Model. Hydrol. Processes, 22, 42054213, doi:10.1002/hyp.7023.

    • Search Google Scholar
    • Export Citation
  • Cuo, L., Lettenmaier D. P. , Alberti M. , and Richey J. E. , 2009: Effects of a century of land cover and climate change on the hydrology of the Puget Sound basin. Hydrol. Processes, 23, 907933, doi:10.1002/hyp.7228.

    • Search Google Scholar
    • Export Citation
  • Cuo, L., Giambelluca T. W. , and Ziegler A. D. , 2011: Lumped parameter sensitivity analysis of a distributed hydrological model within tropical and temperate catchments. Hydrol. Processes, 25, 24052421, doi:10.1002/hyp.8017.

    • Search Google Scholar
    • Export Citation
  • Dibike, Y. B., and Coulibaly P. , 2005: Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol., 307, 145163, doi:10.1016/j.jhydrol.2004.10.012.

    • Search Google Scholar
    • Export Citation
  • Dietz, M., 2007: Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut., 186, 351363, doi:10.1007/s11270-007-9484-z.

    • Search Google Scholar
    • Export Citation
  • Downton, M. W., Miller J. Z. B. , and Pielke R. A. Jr., 2005: Reanalysis of U.S. National Weather Service flood loss database. Nat. Hazards Rev., 6, 1322, doi:10.1061/(ASCE)1527-6988(2005)6:1(13).

    • Search Google Scholar
    • Export Citation
  • Du, E., Link T. E. , Gravelle J. A. , and Hubbart J. A. , 2014: Validation and sensitivity test of the distributed hydrology soil–vegetation model (DHSVM) in a forested mountain watershed. Hydrol. Processes, 28, 61966210, doi:10.1002/hyp.10110.

    • Search Google Scholar
    • Export Citation
  • Duan, W., He B. , Takara K. , Luo P. , Nover D. , Yamashiki Y. , and Huang W. , 2014: Anomalous atmospheric events leading to Kyushu’s flash floods, July 11–14, 2012. Nat. Hazards, 73, 12551267, doi:10.1007/s11069-014-1134-3.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., Meehl G. A. , Parmesan C. , Changnon S. A. , Karl T. R. , and Mearns L. O. , 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, doi:10.1126/science.289.5487.2068.

    • Search Google Scholar
    • Export Citation
  • Edwards Aquifer Authority, 2009: Edwards Aquifer Authority hydrologic data report for 2008. Rep. 09-02, 193 pp. [Available online at http://www.edwardsaquifer.org/files/hydrologic/2009_Hamilton-etal_2008HydrologicData.pdf.]

  • Franczyk, J., and Chang H. , 2009: The effects of climate change and urbanization on the runoff of the Rock Creek basin in the Portland metropolitan area, Oregon, USA. Hydrol. Processes, 23, 805815, doi:10.1002/hyp.7176.

    • Search Google Scholar
    • Export Citation
  • Fry, J. A., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sensing, 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Gao, H., Bohn T. , Podest E. , McDonald K. , and Lettenmaier D. , 2011: On the causes of the shrinking of Lake Chad. Environ. Res. Lett., 6, 034021, doi:10.1088/1748-9326/6/3/034021.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Mearns L. O. , 1991: Approaches to the simulation of regional climate change: A review. Rev. Geophys., 29, 191216, doi:10.1029/90RG02636.

    • Search Google Scholar
    • Export Citation
  • Gober, P., and Kirkwood C. W. , 2010: Vulnerability assessment of climate-induced water shortage in Phoenix. Proc. Natl. Acad. Sci. USA, 107, 21 29521 299, doi:10.1073/pnas.0911113107.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., Wilby R. L. , and Leavesley G. H. , 2000: A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Amer. Water Resour. Assoc., 36, 387397, doi:10.1111/j.1752-1688.2000.tb04276.x.

    • Search Google Scholar
    • Export Citation
  • Homer, C., and Coauthors, 2007: Completion of the 2001 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sensing, 73, 337341.

    • Search Google Scholar
    • Export Citation
  • Howitt, J. A., Baldwin D. S. , Rees G. N. , and Williams J. L. , 2007: Modelling blackwater: predicting water quality during flooding of lowland river forests. Ecol. Modell., 203, 229242, doi:10.1016/j.ecolmodel.2006.11.017.

    • Search Google Scholar
    • Export Citation
  • Huang, J., Yu H. , Guan X. , Wang G. , and Guo R. , 2016: Accelerated dryland expansion under climate change. Nat. Climate Change, 6, 166171, doi:10.1038/nclimate2837.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, doi:10.1016/j.jhydrol.2005.07.003.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Ivancic, T. J., and Shaw S. B. , 2015: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Climatic Change, 133, 681693, doi:10.1007/s10584-015-1476-1.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A., Reuter H. I. , Nelson A. , and Guevara E. , 2008: Hole-filled SRTM for the globe version 4. CGIAR-CSI SRTM 90m database, accessed 3 August 2016. [Available online at http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1.]

  • Jiao, L., 2015: Urban land density function: A new method to characterize urban expansion. Landscape Urban Plann., 139, 2639, doi:10.1016/j.landurbplan.2015.02.017.

    • Search Google Scholar
    • Export Citation
  • Jin, S., Yang L. , Danielson P. , Homer C. , Fry J. , and Xian G. , 2013: A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sens. Environ., 132, 159175, doi:10.1016/j.rse.2013.01.012.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and Coauthors, 2013: Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Climate, 26, 43984413, doi:10.1175/JCLI-D-12-00554.1.

    • Search Google Scholar
    • Export Citation
  • Jonkman, S. N., 2005: Global perspectives on loss of human life caused by floods. Nat. Hazards, 34, 151175, doi:10.1007/s11069-004-8891-3.

    • Search Google Scholar
    • Export Citation
  • Kay, A. L., Davies H. N. , Bell V. A. , and Jones R. G. , 2009: Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Climatic Change, 92, 4163, doi:10.1007/s10584-008-9471-4.

    • Search Google Scholar
    • Export Citation
  • Kay, A. L., Crooks S. M. , and Reynard N. S. , 2014: Using response surfaces to estimate impacts of climate change on flood peaks: Assessment of uncertainty. Hydrol. Processes, 28, 52735287, doi:10.1002/hyp.10000.

    • Search Google Scholar
    • Export Citation
  • Knebl, M. R., Yang Z. L. , Hutchison K. , and Maidment D. R. , 2005: Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River basin summer 2002 storm event. J. Environ. Manage., 75, 325336, doi:10.1016/j.jenvman.2004.11.024.

    • Search Google Scholar
    • Export Citation
  • Kwadijk, J., and Middelkoop H. , 1994: Estimation of impact of climate change on the peak discharge probability of the river Rhine. Climatic Change, 27, 199224, doi:10.1007/BF01093591.

    • Search Google Scholar
    • Export Citation
  • Lehmann, J., Coumou D. , and Frieler K. , 2015: Increased record-breaking precipitation events under global warming. Climatic Change, 132, 501515, doi:10.1007/s10584-015-1434-y.

    • Search Google Scholar
    • Export Citation
  • Liu, J., Zhan J. , and Deng X. , 2005: Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. Ambio, 34 (6), 450455.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Rosenberg E. A. , Lin C. , Nijssen B. , Mishra V. , Andreadis K. M. , Maurer E. P. , and Lettenmaier D. P. , 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Longfield, S. A., and Macklin M. G. , 1999: The influence of recent environmental change on flooding and sediment fluxes in the Yorkshire Ouse basin. Hydrol. Processes, 13, 10511066, doi:10.1002/(SICI)1099-1085(199905)13:7<1051::AID-HYP789>3.0.CO;2-R.

    • Search Google Scholar
    • Export Citation
  • Manh, N. V., Dung N. V. , Hung N. N. , Kummu M. , Merz B. , and Apel H. , 2015: Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. Global Planet. Change, 127, 2233, doi:10.1016/j.gloplacha.2015.01.001.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., Jones R. , Alves L. M. , and Valverde M. C. , 2009: Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol., 29, 22412255, doi:10.1002/joc.1863.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Brekke L. , Pruitt T. , and Duffy P. B. , 2007: Fine‐resolution climate projections enhance regional climate change impact studies. Eos, Trans. Amer. Geophys. Union, 88, 504504, doi:10.1029/2007EO470006.

    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and White R. A. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, doi:10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, N. L., Bashford K. E. , and Strem E. , 2003: Potential impacts of climate change on California hydrology. J. Amer. Water Resour. Assoc., 39, 771784, doi:10.1111/j.1752-1688.2003.tb04404.x.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Wetherald R. T. , Dunne K. A. , and Delworth T. L. , 2002: Increasing risk of great floods in a changing climate. Nature, 415, 514517, doi:10.1038/415514a.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Betancourt J. , Falkenmark M. , Hirsch R. M. , Kundzewicz Z. W. , Lettenmaier D. P. , and Stouffer R. J. , 2008: Stationarity is dead: Whither water management? Science, 319, 573574, doi:10.1126/science.1151915.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., Arnold J. G. , Van Liew M. W. , Bingner R. L. , Harmel R. D. , and Veith T. L. , 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, doi:10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., Sexton D. M. H. , Barnett D. N. , Jones G. S. , Webb M. J. , Collins M. , and Stainforth D. A. , 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Nash, J., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Neumann, J., and Coauthors, 2015: Climate change risks to US infrastructure: impacts on roads, bridges, coastal development, and urban drainage. Climate Change, 131, 97109, doi:10.1007/s10584-013-1037-4.

    • Search Google Scholar
    • Export Citation
  • Ntegeka, V., Baguis P. , Roulin E. , and Willems P. , 2014: Developing tailored climate change scenarios for hydrological impact assessments. J. Hydrol., 508, 307321, doi:10.1016/j.jhydrol.2013.11.001.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., Smith J. A. , Baeck M. L. , Krajewski W. F. , Miller A. J. , and Goska R. , 2008: Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore MD Metropolitan Region. Water Resour. Res., 44, W08446, doi:10.1029/2007WR006346.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., Oppenheimer M. , Smith J. , and Miller A. , 2010: Urbanization, climate change and flood policy in the United States. Climatic Change, 103, 597616, doi:10.1007/s10584-009-9789-6.

    • Search Google Scholar
    • Export Citation
  • NWS, 1999: South Texas floods October 17–22, 1998. NOAA/NWS Rep., 34 pp. [Available online at http://www.nws.noaa.gov/om/assessments/pdfs/txflood.pdf.]

  • Olivera, F., and DeFee B. B. , 2007: Urbanization and its effect on runoff in the Whiteoak Bayou watershed, Texas. J. Amer. Water Resour. Assoc., 43, 170182, doi:10.1111/j.1752-1688.2007.00014.x.

    • Search Google Scholar
    • Export Citation
  • Pall, P., Aina T. , Stone D. A. , Stott P. A. , Nozawa T. , Hilberts A. G. J. , Lohmann D. , and Allen M. R. , 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382385, doi:10.1038/nature09762.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Downton M. W. , 2000: Precipitation and damaging floods: Trends in the United States, 1932–97. J. Climate, 13, 36253637, doi:10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Downton M. W. , and Miller J. B. , 2002: Flood damage in the United States, 1926–2000: A reanalysis of National Weather Service estimates. UCAR Rep., 86 pp. [Available online at http://ww.w.flooddamagedata.org/flooddamagedata.pdf.]

  • Price, C. V., Nakagaki N. , Hitt K. J. , and Clawges R. M. , 2006: Enhanced historical land-use and land-cover data sets of the US Geological Survey. USGS Dataset 240, accessed 3 August 2016. [Available online at http://water.usgs.gov/GIS/dsdl/ds240/.]

  • Prudhomme, C., and Davies H. , 2009a: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: Baseline climate. Climatic Change, 93, 177195, doi:10.1007/s10584-008-9464-3.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and Davies H. , 2009b: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: Future climate. Climatic Change, 93, 197222, doi:10.1007/s10584-008-9461-6.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., Wilby R. L. , Crooks S. , Kay A. L. , and Reynard N. S. , 2010: Scenario-neutral approach to climate change impact studies: Application to flood risk. J. Hydrol., 390, 198209, doi:10.1016/j.jhydrol.2010.06.043.

    • Search Google Scholar
    • Export Citation
  • Rappaport, J., 2003: U.S. urban decline and growth, 1950 to 2000. Econ. Rev., 88, 15–44. [Available online at https://www.kansascityfed.org/Publicat/econrev/Pdf/3q03rapp.pdf.]

  • Sharif, H. O., Chintalapudi S. , Hassan A. A. , Xie H. , and Zeitler J. , 2013: Physically based hydrological modeling of the 2002 floods in San Antonio, Texas. J. Hydrol. Eng., 18, 228236, doi:10.1061/(ASCE)HE.1943-5584.0000475.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., and Wilson J. P. , 2009: Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region. Nat. Hazards, 48, 4157, doi:10.1007/s11069-008-9241-7.

    • Search Google Scholar
    • Export Citation
  • Smith, B., Smith J. , Baeck M. , and Miller A. , 2015: Exploring storage and runoff generation processes for urban flooding through a physically based watershed model. Water Resour. Res., 51, 15521569, doi:10.1002/2014WR016085.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Miller A. J. , Baeck M. L. , Nelson P. A. , Fisher G. T. , and Meierdiercks K. L. , 2005: Extraordinary flood response of a small urban watershed to short-duration convective rainfall. J. Hydrometeor., 6, 599617, doi:10.1175/JHM426.1.

    • Search Google Scholar
    • Export Citation
  • Teng, J., Vaze J. , Chiew F. H. S. , Wang B. , and Perraud J.-M. , 2012: Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. J. Hydrometeor., 13, 122139, doi:10.1175/JHM-D-11-058.1.

    • Search Google Scholar
    • Export Citation
  • Texas State Data Center, 2014: Projections of the population of Texas and counties in Texas by age, sex and race/ethnicity for 2010–2050. Texas State Data Center Doc., 33 pp. [Available online at http://osd.texas.gov/Data/TPEPP/Projections/Methodology.pdf.]

  • Tian, Y., Xu Y.-P. , Booij M. J. , and Cao L. , 2016: Impact assessment of multiple uncertainty sources on high flows under climate change. Hydrol. Res., 47, 6174, doi:10.2166/nh.2015.008.

    • Search Google Scholar
    • Export Citation
  • United Nations, 2014: World urbanization prospects: The 2014 revision. Rep. ST/ESA/SER.A/352, 27 pp. [Available online at https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf.]

  • U.S. Census Bureau, 2011: 2010 census urban and rural classification and urban area criteria. Accessed 3 August 2016. [Available online at https://www.census.gov/geo/reference/ua/urban-rural-2010.html.]

  • Vano, J. A., Voisin N. , Cuo L. , Hamlet A. F. , McGuire Elsner M. , Palmer R. N. , Polebitski A. , and Lettenmaier D. P. , 2010: Climate change impacts on water management in the Puget Sound region, Washington State, USA. Climatic Change, 102, 261286, doi:10.1007/s10584-010-9846-1.

    • Search Google Scholar
    • Export Citation
  • Vogelmann, J. E., Howard S. M. , Yang L. , Larson C. R. , Wylie B. K. , and Van Driel N. , 2001: Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm. Eng. Remote Sensing, 67, 650662.

    • Search Google Scholar
    • Export Citation
  • Weng, Q., 2001: Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environ. Manage., 28, 737748, doi:10.1007/s002670010258.

    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., Vail L. W. , and Lettenmaier D. P. , 1994: A distributed hydrology–vegetation model for complex terrain. Water Resour. Res., 30, 16651679, doi:10.1029/94WR00436.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 2005: Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Processes, 19, 32013219, doi:10.1002/hyp.5819.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., Maurer E. P. , Kumar A. , and Lettenmaier D. P. , 2002: Long‐range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., Leung L. R. , Sridhar V. , and Lettenmaier D. , 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
  • Wright, D. B., Smith J. A. , and Baeck M. L. , 2014: Flood frequency analysis using radar rainfall fields and stochastic storm transposition. Water Resour. Res., 50, 15921615, doi:10.1002/2013WR014224.

    • Search Google Scholar
    • Export Citation
  • Xian, G., Homer C. , Dewitz J. , Fry J. , Hossain N. , and Wickham J. , 2011: Change of impervious surface area between 2001 and 2006 in the conterminous United States. Photogramm. Eng. Remote Sensing, 77, 758762.

    • Search Google Scholar
    • Export Citation
  • Yang, G., Bowling L. C. , Cherkauer K. A. , Pijanowski B. C. , and Niyogi D. , 2010: Hydroclimatic response of watersheds to urban intensity: An observational and modeling-based analysis for the White River basin, Indiana. J. Hydrometeor., 11, 122138, doi:10.1175/2009JHM1143.1.

    • Search Google Scholar
    • Export Citation
  • Yang, L., Smith J. A. , Baeck M. L. , Bou-Zeid E. , Jessup S. M. , Tian F. , and Hu H. , 2014: Impact of urbanization on heavy convective precipitation under strong large-scale forcing: A case study over the Milwaukee–Lake Michigan region. J. Hydrometeor., 15, 261278, doi:10.1175/JHM-D-13-020.1.

    • Search Google Scholar
    • Export Citation
  • Zahmatkesh, Z., Burian S. J. , Karamouz M. , Tavakol-Davani H. , and Goharian E. , 2014: Low-impact development practices to mitigate climate change effects on urban stormwater runoff: Case study of New York City. J. Irrig. Drain. Eng., 141, 04014043, doi:10.1061/(ASCE)IR.1943-4774.0000770.

    • Search Google Scholar
    • Export Citation
  • Zhang, A., Zhang C. , Fu G. , Wang B. , Bao Z. , and Zheng H. , 2012: Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River basin, northeast China. Water Resour. Manage., 26, 21992217, doi:10.1007/s11269-012-0010-8.

    • Search Google Scholar
    • Export Citation
  • Zomer, R. J., Trabucco A. , Bossio D. A. , and Verchot L. V. , 2008: Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ., 126, 6780, doi:10.1016/j.agee.2008.01.014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3580 1238 78
PDF Downloads 1639 263 17