Representation of Snow in the Canadian Seasonal to Interannual Prediction System. Part II: Potential Predictability and Hindcast Skill

Reinel Sospedra-Alfonso Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Reinel Sospedra-Alfonso in
Current site
Google Scholar
PubMed
Close
,
William J. Merryfield Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by William J. Merryfield in
Current site
Google Scholar
PubMed
Close
, and
Viatcheslav V. Kharin Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Viatcheslav V. Kharin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper examines potential predictability (PP) and actual skill for snow water equivalent (SWE) in the Canadian Seasonal to Interannual Prediction System (CanSIPS). A significant PP is found for SWE, with potentially predictable variance over 50% of the total variance at up to a 5-month lead in mid- to high latitudes in forecasts initialized after snow onset. Much, though not all, of this PP stems from a tendency for SWE anomalies to persist through the snow season. Although the spring melt acts as a PP barrier regardless of initialization date, in some regions significant PP reemerges in the following snow season. This is due primarily to ENSO teleconnections that are modeled realistically by CanSIPS, particularly in northwestern North America. Actual skill of CanSIPS in forecasting SWE is assessed using several verification datasets. Highest skills are obtained using a blend of five such datasets, consistent with the hypothesis that skill scores are degraded by errors in the verification data as well as by forecast errors, and that observational errors can be reduced by blending multiple datasets, much as forecast errors can be reduced by averaging across different models. Actual skill for SWE is comparable to, though generally lower than, that implied by PP. This is due in part to the similar autocorrelation properties of the forecast and observed SWE anomalies, which provide skill through anomaly persistence, combined with reasonably accurate initialization of SWE by CanSIPS. Long-lead skill across snow seasons is found to be linked to ENSO, particularly in western North America, much as for PP.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0027.s1.

Corresponding author address: Reinel Sospedra-Alfonso, Canadian Centre for Climate Modelling and Analysis, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada. E-mail: sospedra@uvic.ca

Abstract

This paper examines potential predictability (PP) and actual skill for snow water equivalent (SWE) in the Canadian Seasonal to Interannual Prediction System (CanSIPS). A significant PP is found for SWE, with potentially predictable variance over 50% of the total variance at up to a 5-month lead in mid- to high latitudes in forecasts initialized after snow onset. Much, though not all, of this PP stems from a tendency for SWE anomalies to persist through the snow season. Although the spring melt acts as a PP barrier regardless of initialization date, in some regions significant PP reemerges in the following snow season. This is due primarily to ENSO teleconnections that are modeled realistically by CanSIPS, particularly in northwestern North America. Actual skill of CanSIPS in forecasting SWE is assessed using several verification datasets. Highest skills are obtained using a blend of five such datasets, consistent with the hypothesis that skill scores are degraded by errors in the verification data as well as by forecast errors, and that observational errors can be reduced by blending multiple datasets, much as forecast errors can be reduced by averaging across different models. Actual skill for SWE is comparable to, though generally lower than, that implied by PP. This is due in part to the similar autocorrelation properties of the forecast and observed SWE anomalies, which provide skill through anomaly persistence, combined with reasonably accurate initialization of SWE by CanSIPS. Long-lead skill across snow seasons is found to be linked to ENSO, particularly in western North America, much as for PP.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0027.s1.

Corresponding author address: Reinel Sospedra-Alfonso, Canadian Centre for Climate Modelling and Analysis, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada. E-mail: sospedra@uvic.ca

Supplementary Materials

    • Supplemental Materials (PDF 36.86 MB)
Save
  • Ambadan, J., Berg A. A. , and Merryfield W. J. , 2016: Influence of snow and soil moisture initialization on sub-seasonal predictability and forecast skill in boreal spring. Climate Dyn., 47, 49–65, doi:10.1007/s00382-015-2821-9.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land water resources dataset. Hydrol. Earth Syst. Sci., 19, 389–407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Bamzai, A. S., 2003: Relationship of snow cover variability and Arctic Oscillation index on a hierarchy of time scales. Int. J. Climatol., 23, 131–142, doi:10.1002/joc.854.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2004: Long time-scale potential predictability in an ensemble of coupled climate models. Climate Dyn., 23, 29–44, doi:10.1007/s00382-004-0419-8.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., Kharin V. V. , and Merryfield W. J. , 2013: Decadal predictability and forecast skill. Climate Dyn., 41, 1817–1833, doi:10.1007/s00382-013-1705-0.

    • Search Google Scholar
    • Export Citation
  • Bojariu, R., and Gimeno L. , 2003: The role of snow cover fluctuations in multiannual NAO persistence. Geophys. Res. Lett., 30, 1156, doi:10.1029/2002GL015651.

    • Search Google Scholar
    • Export Citation
  • Brun, E., Vionnet V. , Boone A. , Decharme B. , Peings Y. , Valette R. , Karbou F. , and Morin S. , 2013: Simulation of northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203–219, doi:10.1175/JHM-D-12-012.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and Coauthors, 2016: The Climate-system Historical Forecast Project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 1413–1427, doi:10.1002/qj.2743.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., Serreze M. C. , and Robinson D. A. , 1999: Atmospheric controls on Eurasian snow extent. Int. J. Climatol., 19, 27–40, doi:10.1002/(SICI)1097-0088(199901)19:1<27::AID-JOC346>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., and Entekhabi D. , 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345–348, doi:10.1029/1998GL900321.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., and Fletcher C. , 2007: Improved skill of Northern Hemisphere winter surface temperature predictions based on land–atmosphere fall anomalies. J. Climate, 20, 4118–4132, doi:10.1175/JCLI4241.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., Saito K. , and Entekhabi D. , 2001: The role of the Siberian High in Northern Hemisphere climate variability. Geophys. Res. Lett., 28, 299–302, doi:10.1029/2000GL011927.

    • Search Google Scholar
    • Export Citation
  • Corti, S., Molteni F. , and Branković C. , 2000: Predictability of snow-depth anomalies over Eurasia and associated circulation patterns. Quart. J. Roy. Meteor. Soc., 126, 241–262, doi:10.1002/qj.49712656212.

    • Search Google Scholar
    • Export Citation
  • Dee, P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., Kumar A. , and Bhashkar J. , 2013: Potential seasonal predictability: Comparison between empirical and dynamical model estimates. Geophys. Res. Lett., 40, 3200–3206, doi:10.1002/grl.50581.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., Nattala J. , and Tippett M. K. , 2014: Skill improvement from increased ensemble size and model diversity. Geophys. Res. Lett., 41, 7331–7342, doi:10.1002/2014GL060133.

    • Search Google Scholar
    • Export Citation
  • Dewey, K. F., 1977: Daily maximum and minimum temperature forecasts and the influence of snow cover. Mon. Wea. Rev., 105, 1594–1597, doi:10.1175/1520-0493(1977)105<1594:DMAMTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and Molteni F. , 1999: Ensemble simulations of Eurasian snow-depth anomalies and their influence on the summer Asian monsoon. Quart. J. Roy. Meteor. Soc., 125, 2597–2610, doi:10.1002/qj.49712555913.

    • Search Google Scholar
    • Export Citation
  • Gong, G., Entekhabi D. , Cohen J. , and Robinson D. , 2004: Sensitivity of atmospheric response to modeled snow anomaly characteristics. J. Geophys. Res., 109, D06107, doi:10.1029/2003JD004160.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., Karl T. R. , and Knight R. W. , 1994: Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere. J. Climate, 7, 1633–1656, doi:10.1175/1520-0442(1994)007<1633:COSCTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., Linderholm H. W. , Woo S.-H. , Folland C. , Kim B.-M. , Kim S.-J. , and Chen D. , 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 1956–1972, doi:10.1175/JCLI-D-12-00159.1.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., Peng P. , and Chen M. , 2014: Is there a relationship between potential and actual skill? Mon. Wea. Rev., 142, 2220–2227, doi:10.1175/MWR-D-13-00287.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and Wu Z. , 2011: Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North America winter temperature. J. Climate, 24, 2801–2813, doi:10.1175/2010JCLI3889.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1976: Estimates of natural variability of time-averaged sea level pressure. Mon. Wea. Rev., 104, 942–952, doi:10.1175/1520-0493(1976)104<0942:EOTNVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martineu, C., Caneill J.-Y. , and Sadourny R. , 1999: Potential predictability of European winters from the analysis of seasonal simulations with an AGCM. J. Climate, 12, 3033–3061, doi:10.1175/1520-0442(1999)012<3033:PPOEWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., Denis B. , Fontecilla J.-S. , Lee W.-S. , Kharin V. V. , Hodgson J. , and Archambault B. , 2011: The Canadian Seasonal to Interannual Prediction System (CanSIPS). Tech. Note, Environment Canada, 51 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_cansips_20111124_e.pdf.]

  • Merryfield, W. J., Lee W.-S. , Boer G. J. , Kharin V. V. , Scinocca J. F. , Flato G. M. , Ajayamohan R. S. , and Fyfe J. C. , 2013: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 2910–2945, doi:10.1175/MWR-D-12-00216.1.

    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., Derksen C. , Kushner P. J. , and Brown R. , 2015: Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. J. Climate, 28, 8037–8051, doi:10.1175/JCLI-D-15-0229.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 2417, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Wang W. C. , and Gong W. , 2006: Model and observational analysis of northeast U. S. regional climate and its relationship to the PNA and NAO patterns during early winter. Mon. Wea. Rev., 134, 3479–3505, doi:10.1175/MWR3234.1.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., Senan R. , Balsamo G. , Doblas-Reyes F. J. , Vitart F. , Weisheimer A. , Carrasco A. , and Benestad R. E. , 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 1969–1982, doi:10.1007/s00382-013-1782-0.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., Douville H. , Alkama R. , and Decharme B. , 2011: Snow contribution to springtime atmospheric predictability over the second half of the twentieth century. Climate Dyn., 37, 985–1004, doi:10.1007/s00382-010-0884-1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., 2012: The MERRA-Land Data Product. GMAO Office Note 3 (Version 1.2), NASA, 38 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Reichle541.pdf.]

  • Reichle, R. H., Koster R. , Lannoy G. D. , Forman B. , Liu Q. , Mahanam S. , and Toure A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 6322–6338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., Butler A. H. , Furtado J. C. , Cohen J. L. , and Kumar A. , 2013: CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Climate Dyn., 41, 1099–1116, doi:10.1007/s00382-013-1850-5.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381–394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11, 109–120, doi:10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and Cohen J. , 2003: The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys. Res. Lett., 30, 1302, doi:10.1029/2002GL016341.

    • Search Google Scholar
    • Export Citation
  • Saito, K., Cohen J. , and Entekhabi D. , 2001: Evolution of atmospheric response to early-season Eurasian snow cover anomalies. Mon. Wea. Rev., 129, 2746–2760, doi:10.1175/1520-0493(2001)129<2746:EOARTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and Dirmeyer P. A. , 2001: Potential predictability of Eurasia snow cover. Atmos. Sci. Lett., 2, 1–8, doi:10.1006/asle.2001.0037.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Kushnir Y. , Nakamura J. , Ting M. , and Naik N. , 2010: Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett., 37, L14703, doi:10.1029/2010GL043830.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Carse F. , Barry R. G. , and Rogers J. C. , 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemispheric circulation. J. Climate, 10, 453–464, doi:10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., and Tziperman E. , 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian Monsoons. J. Climate, 18, 2067–2079, doi:10.1175/JCLI3391.1.

    • Search Google Scholar
    • Export Citation
  • Shongwe, M. E., Ferro C. A. T. , Coelho C. A. S. , and van Oldenborgh G. J. , 2007: Predictability of cold spring seasons in Europe. Mon. Wea. Rev., 135, 4185–4201, doi:10.1175/2007MWR2094.1.

    • Search Google Scholar
    • Export Citation
  • Sobolowski, S., and Frei A. , 2007: Lagged relationships between North American snow mass and atmospheric teleconnections indices. Int. J. Climatol., 27, 221–231, doi:10.1002/joc.1395.

    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., and Merryfield W. J. , 2016: Potential and actual predictability of snow water equivalent in historical forecasts of the Canadian Fourth Generation Coupled Climate Model (CanCM4). 40th NOAA Annual Climate Diagnostics and Prediction Workshop, Denver, CO, NOAA, 129–134. [Available online at http://www.nws.noaa.gov/ost/climate/STIP/40CDPW/40cdpw-RSospedra-Alfonso.pdf.]

  • Sospedra-Alfonso, R., Melton J. R. , and Merryfield W. J. , 2015: Effects of temperature and precipitation on snowpack variability in the central Rocky Mountains as a function of elevation. Geophys. Res. Lett., 42, 4429–4438, doi:10.1002/2015GL063898.

    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., Mudryk L. , Merryfield W. J. , and Derksen C. , 2016: Representation of snow in the Canadian Seasonal to Interannual Prediction System. Part I: Initialization. J. Hydrometeor., 17, 1467–1488, doi:10.1175/JHM-D-14-0223.1.

    • Search Google Scholar
    • Export Citation
  • Takala, M., Luojus K. , Pulliainen J. , Derksen C. , Lemmetyinen J. , Karna J.-P. , Koskinen J. , and Bojkov B. , 2011: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 3517–3529, doi:10.1016/j.rse.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and Zwiers F. W. , 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean–atmosphere system. Meteor. Atmos. Phys., 56, 33–55, doi:10.1007/BF01022520.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., Li J. , Jiang Z. , and Ma T. , 2012: Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: From the East Asian summer monsoon perspective. J. Climate, 25, 2481–2489, doi:10.1175/JCLI-D-11-00135.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S., 1996: ENSO–snow–monsoon associations and seasonal–interannual predictions. Int. J. Climatol., 16, 125–134, doi:10.1002/(SICI)1097-0088(199602)16:2<125::AID-JOC999>3.0.CO;2-V.

    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., Wetherald R. T. , and Manabe S. , 1983: A model study of the short term climatic and hydrologic effects of sudden snow-cover removal. Mon. Wea. Rev., 111, 1013–1024, doi:10.1175/1520-0493(1983)111<1013:AMSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1996: Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Climate Dyn., 12, 825–847, doi:10.1007/s003820050146.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 806 548 56
PDF Downloads 257 45 6