Estimates of Global Surface Hydrology and Heat Fluxes from the Community Land Model (CLM4.5) with Four Atmospheric Forcing Datasets

Aihui Wang Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Aihui Wang in
Current site
Google Scholar
PubMed
Close
,
Xubin Zeng Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
, and
Donglin Guo Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Donglin Guo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global land surface hydrology and heat fluxes can be estimated by running a land surface model (LSM) driven by the atmospheric forcing dataset. Previous multimodel studies focused on the impact of different LSMs on model results. Here the sensitivity of the Community Land Model, version 4.5 (CLM4.5), results to the atmospheric forcing dataset is documented. Together with the model default global forcing dataset (CRU–NCEP, hereafter CRUNCEP), three newly developed, reanalysis-based, near-surface meteorological datasets (i.e., MERRA, CFSR, and ERA-Interim) with the precipitation adjusted by the Global Precipitation Climatology Project monthly product were used to drive CLM4.5. All four simulations were run at 0.5° × 0.5° grids from 1979 to 2009 with the identical initialization. The simulated monthly surface hydrology variables, fluxes, and the forcing datasets were then evaluated against various observation-based datasets (soil moisture, runoff, snow depth and water equivalent, and flux tower measurements). To partially avoid the mismatch between model gridbox values and point measurements, three approaches were taken. The model simulations based on three newly constructed forcing datasets are overall better than the simulation from CRUNCEP, in particular for soil moisture and snow quantities. The ensemble mean from the CLM4.5 simulations using the four forcing datasets is generally superior to individual simulations, and the ensemble mean latent and sensible heat fluxes over global land (60°S–90°N) are 42.8 and 40.3 W m−2, respectively. The differences in both precipitation and other atmospheric forcing variables (e.g., air temperature and downward solar radiation) contribute to the differences in simulated results. The datasets are available from the authors for further evaluation and for various applications.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0041.s1.

Corresponding author address: Aihui Wang, Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyang District, Beijing 100029, China. E-mail: wangaihui@mail.iap.ac.cn

Abstract

Global land surface hydrology and heat fluxes can be estimated by running a land surface model (LSM) driven by the atmospheric forcing dataset. Previous multimodel studies focused on the impact of different LSMs on model results. Here the sensitivity of the Community Land Model, version 4.5 (CLM4.5), results to the atmospheric forcing dataset is documented. Together with the model default global forcing dataset (CRU–NCEP, hereafter CRUNCEP), three newly developed, reanalysis-based, near-surface meteorological datasets (i.e., MERRA, CFSR, and ERA-Interim) with the precipitation adjusted by the Global Precipitation Climatology Project monthly product were used to drive CLM4.5. All four simulations were run at 0.5° × 0.5° grids from 1979 to 2009 with the identical initialization. The simulated monthly surface hydrology variables, fluxes, and the forcing datasets were then evaluated against various observation-based datasets (soil moisture, runoff, snow depth and water equivalent, and flux tower measurements). To partially avoid the mismatch between model gridbox values and point measurements, three approaches were taken. The model simulations based on three newly constructed forcing datasets are overall better than the simulation from CRUNCEP, in particular for soil moisture and snow quantities. The ensemble mean from the CLM4.5 simulations using the four forcing datasets is generally superior to individual simulations, and the ensemble mean latent and sensible heat fluxes over global land (60°S–90°N) are 42.8 and 40.3 W m−2, respectively. The differences in both precipitation and other atmospheric forcing variables (e.g., air temperature and downward solar radiation) contribute to the differences in simulated results. The datasets are available from the authors for further evaluation and for various applications.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0041.s1.

Corresponding author address: Aihui Wang, Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyang District, Beijing 100029, China. E-mail: wangaihui@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 1.50 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Ban-Weiss, G. A., Bala G. , Cao L. , Pongratz J. , and Caldeira K. , 2011: Climate forcing and response to idealized changes in surface latent and sensible heat. Environ. Res. Lett., 6, 034032, doi:10.1088/1748-9326/6/3/034032.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Chen J. , Robertson F. R. , and Adler R. F. , 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol, 47, 22792299, doi:10.1175/2008JAMC1921.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Robertson F. R. , and Chen J. , 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and Brasnett B. , 2010: Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data. National Snow and Ice Data Center, accessed 17 August 2016. [Available online at http://nsidc.org/data/nsidc-0447.html.].

  • Decharme, B., and Douville H. , 2006: Uncertainties in the GSWP-2 precipitation forcing and their impacts on regional and global hydrological simulations. Climate Dyn., 27, 695713, doi:10.1007/s00382-006-0160-6.

    • Search Google Scholar
    • Export Citation
  • Decker, M., Brunke M. A. , Wang Z. , Sakaguchi K. , Zeng X. , and Bosilovich M. G. , 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 19161944, doi:10.1175/JCLI-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Manabe S. , 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547, doi:10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. J. , and Sato N. , 1999: The Global Soil Wetness Project: A pilot project for global land surface modeling and validation. Bull. Amer. Meteor. Soc., 80, 851878, doi:10.1175/1520-0477(1999)080<0851:TPPOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, doi:10.1175/BAMS-87-10-1381.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2013: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J., 12, doi:10.2136/vzj2012.0097.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., Vorosmarty C. J. , and Grabs W. , 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 1042, doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., Dirmeyer P. A. , Hu Z. , Gao X. , and Zhao M. , 2006: Evaluation of the second Global Soil Wetness Project soil moisture simulations. 2: Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, doi:10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., Dirmeyer P. A. , Gao X. , and Zhao M. , 2007: Improving the quality of simulated soil moisture with a multi-model ensemble approach. Quart. J. Roy. Meteor. Soc., 133, 731747, doi:10.1002/qj.48.

    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., and Isard S. A. , 1994: A soil moisture climatology of Illinois. J. Climate, 7, 822833, doi:10.1175/1520-0442(1994)007<0822:ASMCOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Gu G. , 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kluzek, E., 2013: CESM research tools: CLM4.5 in CESM1.2.0 user’s guide documentation. NCAR, accessed 17 August 2016. [Available online at http://www.cesm.ucar.edu/models/cesm1.2/clm/models/lnd/clm/doc/UsersGuide/book1.html.]

  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646, doi:10.1175/1525-7541(2000)001<0026:VAPOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., Thornton P. E. , Oleson K. W. , and Bonan G. B. , 2007: Partitioning of evaporation into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8, 862880, doi:10.1175/JHM596.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., Oleson K. W. , Flanner M. G. , Fletcher C. G. , Lawrence P. J. , Levis S. , Swenson S. C. , and Bonan G. B. , 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260, doi:10.1175/JCLI-D-11-00103.

    • Search Google Scholar
    • Export Citation
  • Lopez Caceres, M., Takakai F. , Iwahana G. , Fedorov A. N. , Iijima Y. , Hatano R. , and Fukuda M. , 2015: Snowmelt and the hydrological interaction of forest–grassland ecosystems in central Yakutia, eastern Siberia. Hydrol. Processes, 29, 30743083, doi:10.1002/hyp.10424.

    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., Gorshkov V. G. , Sheil D. , Nobre A. D. , Bunyard P. , and Li B.-L. , 2014: Why does air passage over forest yield more rain? Examining the coupling between rainfall, pressure, and atmospheric moisture content. J. Hydrometeor., 15, 411426, doi:10.1175/JHM-D-12-0190.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mizukami, N., and Coauthors, 2016: Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models. J. Hydrometeor., 17, 7398, doi:10.1175/JHM-D-14-0187.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations‐based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol. Earth Syst. Sci., 17, 37073720, doi:10.5194/hess-17-3707-2013.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , Gulden L. E. , and Su H. , 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, doi:10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Oleson, K., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., doi:10.5065/D6RR1W7M.

  • Qian, T., Dai A. , Trenberth K. E. , and Oleson K. W. , 2006: Simulation of global land surface conditions from 1948 to 2004: Part I: Forcing data and evaluations. J. Hydrometeor., 7, 953975, doi:10.1175/JHM540.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., Koster R. D. , Gabriëlle J. , De Lannoy G. , Forman B. , Liu Q. , Mahanama S. P. P. , and Touré A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. R., and Coauthors, 2011: MERRA—NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. , Srinivasan G. , Entin J. , Hollinger S. , Speranskaya N. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81, 12811299, doi:10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Toure, A., Rodell M. , Yang Z. , Beaudoing H. , Kim E. , Zhang Y. , and Kwon Y. , 2016: Evaluation of the snow simulations from the Community Land Model, version 4 (CLM4). J. Hydrometeor., 17, 153170, doi:10.1175/JHM-D-14-0165.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Dai A. , van der Schrier G. , Jones P. D. , Barichivich J. , Briffa K. R. , and Sheffield J. , 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, doi:10.1038/nclimate2067.

    • Search Google Scholar
    • Export Citation
  • van Huijgevoort, M. H. J., and Coauthors, 2013: Global multimodel analysis of drought in runoff for the second half of the twentieth century. J. Hydrometeor., 14, 15351552, doi:10.1175/JHM-D-12-0186.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and Zeng X. , 2011: Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China. J. Geophys. Res., 116, D02107, doi:10.1029/2010JD014659.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and Zeng X. , 2012: Evaluation of multi reanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, doi:10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Zeng X. , Shen S. S. P. , Zeng Q.-C. , and Dickinson R. , 2006: Timescales of land surface hydrology. J. Hydrometeor., 7, 868879, doi:10.1175/JHM527.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Bohn T. , Mahanama P. , Koster R. , and Lettenmaier D. , 2009: Multimodel ensemble reconstruction of drought over the continental United States. J. Climate, 22, 26942712, doi:10.1175/2008JCLI2586.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Lettenmaier D. , and Sheffield J. , 2011: Soil moisture drought in China, 1950–2006. J. Climate, 24, 32573270, doi:10.1175/2011JCLI3733.1.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2009: Global dimming and brightening: A review. J. Geophys. Res., 114, D00D16, doi:10.1029/2008JD011470.

  • Wild, M., and Liepert B. , 2010: The earth radiation balance as driver of the global hydrological cycle. Environ. Res. Lett., 5, 025203, doi:10.1088/1748-9326/5/2/025203.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Sheffield J. , Ek M. , Dong J. , Chaney N. , Wei H. , Meng J. , and Wood E. , 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107125, doi:10.1016/j.jhydrol.2014.02.027.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Ford T. W. , Wu Y. , Quiring S. M. , and Ek M. B. , 2015: Automated quality control of in situ soil moisture from the North American Soil Moisture Database using NLDAS-2 products. J. Appl. Meteor. Climatol., 54, 12671282, doi:10.1175/JAMC-D-14-0275.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., Barlage M. , Castro C. , and Fling K. , 2010: Comparison of land–precipitation coupling strength using observations and models. J. Hydrometeor., 11, 979994, doi:10.1175/2010JHM1226.1.

    • Search Google Scholar
    • Export Citation
  • Zong, Y., and Chen X. , 2000: The 1998 flood on the Yangtze, China. Nat. Hazards, 22, 165184, doi:10.1023/A:1008119805106.

  • Zreda, M., Shuttleworth W. J. , Zeng X. , Zweck C. , Desilets D. , Franz T. , and Rosolem R. , 2012: COSMOS: Cosmic-Ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci., 16, 40794099, doi:10.5194/hess-16-4079-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1628 874 49
PDF Downloads 728 156 11