The Impact of Vertical Measurement Depth on the Information Content of Soil Moisture for Latent Heat Flux Estimation

Jianxiu Qiu Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China

Search for other papers by Jianxiu Qiu in
Current site
Google Scholar
PubMed
Close
,
Wade T. Crow Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland

Search for other papers by Wade T. Crow in
Current site
Google Scholar
PubMed
Close
, and
Grey S. Nearing Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Grey S. Nearing in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study aims to identify the impact of vertical support on the information content of soil moisture (SM) for latent heat flux estimation. This objective is achieved via calculation of the mutual information (MI) content between multiple soil moisture variables (with different vertical supports) and current/future evaporative fraction (EF) using ground-based soil moisture and latent/sensible heat flux observations acquired from the AmeriFlux network within the contiguous United States. Through the intercomparison of MI results from different SM–EF pairs, the general value (for latent heat flux estimation) of superficial soil moisture observations , vertically integrated soil moisture observations , and vertically extrapolated soil moisture time series [soil wetness index (SWI) from a simple low-pass transformation of ] are examined. Results suggest that, contrary to expectations, 2-day averages of and have comparable mutual information with regards to EF. That is, there is no clear evidence that the information content for flux estimation is enhanced via deepening the vertical support of superficial soil moisture observations. In addition, the utility of SWI in monitoring and forecasting EF is partially dependent on the adopted parameterization of time-scale parameter T in the exponential filter. Similar results are obtained when analyses are conducted at the monthly time scale, only with larger error bars. The contrast between the results of this paper and past work focusing on utilizing soil moisture to predict vegetation condition demonstrates that the particular application should be considered when characterizing the information content of soil moisture time series measurements.

Denotes Open Access content.

Corresponding author address: Jianxiu Qiu, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China. E-mail: qiujianxiu@mail.sysu.edu.cn

Abstract

This study aims to identify the impact of vertical support on the information content of soil moisture (SM) for latent heat flux estimation. This objective is achieved via calculation of the mutual information (MI) content between multiple soil moisture variables (with different vertical supports) and current/future evaporative fraction (EF) using ground-based soil moisture and latent/sensible heat flux observations acquired from the AmeriFlux network within the contiguous United States. Through the intercomparison of MI results from different SM–EF pairs, the general value (for latent heat flux estimation) of superficial soil moisture observations , vertically integrated soil moisture observations , and vertically extrapolated soil moisture time series [soil wetness index (SWI) from a simple low-pass transformation of ] are examined. Results suggest that, contrary to expectations, 2-day averages of and have comparable mutual information with regards to EF. That is, there is no clear evidence that the information content for flux estimation is enhanced via deepening the vertical support of superficial soil moisture observations. In addition, the utility of SWI in monitoring and forecasting EF is partially dependent on the adopted parameterization of time-scale parameter T in the exponential filter. Similar results are obtained when analyses are conducted at the monthly time scale, only with larger error bars. The contrast between the results of this paper and past work focusing on utilizing soil moisture to predict vegetation condition demonstrates that the particular application should be considered when characterizing the information content of soil moisture time series measurements.

Denotes Open Access content.

Corresponding author address: Jianxiu Qiu, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China. E-mail: qiujianxiu@mail.sysu.edu.cn
Save
  • Albergel, C., and Coauthors, 2008: From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci., 12, 13231337, doi:10.5194/hess-12-1323-2008.

    • Search Google Scholar
    • Export Citation
  • Boden, T. A., Krassovski M. , and Yang B. , 2013: The AmeriFlux data activity and data system: An evolving collection of data management techniques, tools, products and services. Geosci. Instrum. Methods Data Syst., 2, 165176, doi:10.5194/gi-2-165-2013.

    • Search Google Scholar
    • Export Citation
  • Bolten, J. D., and Crow W. T. , 2012: Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture. Geophys. Res. Lett., 39, L19406, doi:10.1029/2012GL053470.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2011: Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ., 115, 33903408, doi:10.1016/j.rse.2011.08.003.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. D. H. Miller, Ed., International Geophysics Series, Vol. 18, Academic Press, 508 pp.

  • Ceballos, A., Scipal K. , Wagner W. , and Martínez-Fernández J. , 2005: Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero basin, Spain. Hydrol. Processes, 19, 15491566, doi:10.1002/hyp.5585.

    • Search Google Scholar
    • Export Citation
  • Cover, T. M., and Thomas J. A. , 1991: Elements of Information Theory. Wiley, 542 pp.

  • Crow, W. T., Lei F. , Hain C. , Anderson M. C. , Scott R. L. , Billesbach D. , and Arkebauer T. , 2015: Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation. Geophys. Res. Lett., 42, 84158423, doi:10.1002/2015GL065929.

    • Search Google Scholar
    • Export Citation
  • De Martonne, E., 1926: Une nouvelle fonction climatologique: L’indice d’aridité. Meteorologie, 2, 449458.

  • Eagleson, P. S., 1978: Climate, soil, and vegetation: 4. The expected value of annual evapotranspiration. Water Resour. Res., 14, 731739, doi:10.1029/WR014i005p00731.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., Harris E. , and Quiring S. M. , 2014a: Estimating root zone soil moisture using near-surface observations from SMOS. Hydrol. Earth Syst. Sci., 18, 139154, doi:10.5194/hess-18-139-2014.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., Wulff C. O. , and Quiring S. M. , 2014b: Assessment of observed and model-derived soil moisture–evaporative fraction relationships over the United States Southern Great Plains. J. Geophys. Res. Atmos., 119, 62796291, doi:10.1002/2014JD021490.

    • Search Google Scholar
    • Export Citation
  • Komatsu, T. S., 2003: Toward a robust phenomenological expression of evaporation efficiency for unsaturated soil surfaces. J. Appl. Meteor., 42, 13301334, doi:10.1175/1520-0450(2003)042<1330:TARPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Schubert S. D. , and Suarez M. J. , 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, doi:10.1175/2008JCLI2718.1.

    • Search Google Scholar
    • Export Citation
  • Kullback, S., and Leibler R. A. , 1951: On information and sufficiency. Ann. Math. Stat., 22, 7986, doi:10.1214/aoms/1177729694.

  • Kumar, S. V., Reichle R. H. , Koster R. D. , Crow W. T. , and Peters-Lidard C. D. , 2009: Role of subsurface physics in the assimilation of surface soil moisture observations. J. Hydrometeor., 10, 15341547, doi:10.1175/2009JHM1134.1.

    • Search Google Scholar
    • Export Citation
  • Manfreda, S., Brocca L. , Moramarco T. , Melone F. , and Sheffield J. , 2014: A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrol. Earth Syst. Sci., 18, 11991212, doi:10.5194/hess-18-1199-2014.

    • Search Google Scholar
    • Export Citation
  • Mo, X., Qiu J. , Liu S. , and Naeimi V. , 2011: Estimating root-layer soil moisture for north China from multiple data sources. IAHS Publ., 343, 118124.

    • Search Google Scholar
    • Export Citation
  • Nearing, G. S., and Gupta H. V. , 2015: The quantity and quality of information in hydrologic models. Water Resour. Res., 51, 524538, doi:10.1002/2014WR015895.

    • Search Google Scholar
    • Export Citation
  • Nearing, G. S., Gupta H. V. , Crow W. T. , and Gong W. , 2013: An approach to quantifying the efficiency of a Bayesian filter. Water Resour. Res., 49, 21642173, doi:10.1002/wrcr.20177.

    • Search Google Scholar
    • Export Citation
  • Nearing, G. S., Mocko D. M. , Peters-Lidard C. D. , Kumar S. V. , and Xia Y. , 2016: Benchmarking NLDAS-2 soil moisture and evapotranspiration to separate uncertainty contributions. J. Hydrometeor., 17, 745759, doi:10.1175/JHM-D-15-0063.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, J., Crow W. T. , Nearing G. S. , Mo X. , and Liu S. , 2014: The impact of vertical measurement depth on the information content of soil moisture time series data. Geophys. Res. Lett., 41, 49975004, doi:10.1002/2014GL060017.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , Liu P. , Mahanama S. P. P. , Njoku E. G. , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Crow W. T. , Koster R. D. , Sharif H. O. , and Mahanama S. P. P. , 2008: Contribution of soil moisture retrievals to land data assimilation products. Geophys. Res. Lett., 35, L01404, doi:10.1029/2007GL031986.

    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., Jarlan L. , Calvet J. C. , Bouyssel F. , and de Rosnay P. , 2007: From near-surface to root-zone soil moisture using different assimilation techniques. J. Hydrometeor., 8, 194206, doi:10.1175/JHM571.1.

    • Search Google Scholar
    • Export Citation
  • Scott, D. W., 2004: Multivariate density estimation and visualization. Handbook of Computational Statistics: Concepts and Methods, edited by J. E. Gentle,W. Haerdle, and Y. Mori, Springer, 517–538.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Heiser M. D. , and Hall F. G. , 1992: Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales. J. Geophys. Res., 97, 19 03319 059, doi:10.1029/92JD01096.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Shannon, C. E., 1948: A mathematical theory of communication. Bell Syst. Tech. J., 27, 379423, doi:10.1002/j.1538-7305.1948.tb01338.x.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., Lemoine G. , and Rott H. , 1999: A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., 70, 191207, doi:10.1016/S0034-4257(99)00036-X.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Ford T. W. , Wu Y. , Quiring S. M. , and Ek M. B. , 2015: Automated quality control of in situ soil moisture from the North American Soil Moisture Database using NLDAS-2 products. J. Appl. Meteor., 54, 12671282, doi:10.1175/JAMC-D-14-0275.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1737 894 69
PDF Downloads 611 123 11